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a b s t r a c t

An important feature of impacts into Solar System bodies is the fate of crater ejecta, the near-surface
material launched during the highly dynamic crater formation process. Laboratory measurements of
impact crater ejecta from 18 studies are summarized. The data are examined and used to assess our
understanding of how the ejecta velocity and mass distributions depend on the conditions of an impact
event. The effects of impact speed on the ejecta are reasonably well understood, but the dependences on
target properties such as strength and porosity are only poorly constrained. A point-source scaling model
for the ejecta mass and velocity distributions is developed and fit to the data for several classes of mate-
rials distinguished by porosity.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Impact cratering has been a major factor in the geological evo-
lution of the Solar System. The accompanying excavation and ejec-
tion of surface material is the process by which regoliths are
formed and meteorite precursors escape from their parent bodies.
It is essential to understand the mass and velocity distribution of
the ejecta because those determine whether collisions are erosive
or accretional, whether regolith materials are scattered widely or
locally, whether blocks are retained on small asteroids, and so on.

Housen et al. (1983) constructed the basic framework for the
scaling laws that describe ejecta velocity distributions and pro-
vided specific estimates based on the handful of data available at
the time. In the ensuing 27 years, new techniques have been devel-
oped to measure ejecta velocities and a variety of ejecta velocity
measurements have appeared in the literature.

In addition, significant new insights have been gained from
spacecraft observations of asteroids. For example, the scaling law
for rocky materials presented by Housen et al. (1983) and subse-
quently used by Veverka et al. (1986) indicated that rocky aster-
oids with diameter less than about 70 km should be barren.1 This
ll rights reserved.
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. 354). The text should have
l ejecta was about 70 km and
prediction was contradicted when substantial regoliths (Sullivan
et al., 2002) were observed on small rocky asteroids such as Gaspra
(12 km), Eros (15 km) and Ida (31 km). Clearly, our expectations for
ejecta from impacts in rock needed to be revised (Housen, 1992).

Asteroid Mathilde, a 50 km body with perhaps 50% void space
(Veverka et al., 1999), also gave impact modelers a wake-up call.
Mathilde’s large craters show no evidence of the substantial ejecta
deposits that have always been observed around such structures,
even on a body such as Phobos that is roughly half the size of
Mathilde. Our experiments (Housen and Holsapple, 2003) suggest
that material was not ejected from Mathilde’s large craters because
of its high porosity, but code calculations (Asphaug et al., 1998)
concluded that nearly all of it escaped. In either case, Mathilde’s
craters underscore the importance of including porosity in consid-
erations of ejecta velocities.

The purpose of this paper is to collect, summarize, and interpret
the current knowledge of ejecta velocity distributions within the
scaling theory, and to highlight areas that need further study. The
next two sections define the terminology used and the scaling laws
that apply to ejecta. Section 4 summarizes the sources of ejecta data
used in the analysis. The data are then examined within the frame-
work of the scaling laws in Section 5. Section 6 describes an ejecta
model and provides fits to the data for various target materials.

2. The ejecta velocity distribution

At an impact site, the energy and momentum of the impactor
are locally and rapidly transmitted into the impacted target body.
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Fig. 1. Definition of variables.
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The result is an expanding crater that is eventually arrested by
either gravity or material strength. As the crater expands material
is sheared, moving upward and outward along the crater bowl. The
point at which a particle crosses through the original surface de-
fines the launch position, x, and the ejection velocity, v, of the par-
ticle2 (Fig. 1). When describing the ejecta velocity distribution, we
often refer to the relationship between v and x without regard to
the starting location of the particle. This is possible because particles
that have the same surface launch position have very nearly the
same launch velocity, even though the particles had a variety start-
ing locations in the target.3 This was shown experimentally by
Piekutowski (1980), and confirmed in our own experiments and
recent code calculations.

At least five different techniques have been used to measure the
ejection velocity as a function of position, i.e. v (x): (1) Piekutowski
et al. (1977) measured velocities for small explosion events by
using a sheet of light perpendicular to the target surface to illumi-
nate a single plane of the ejecta plume. A camera with a rotating
shutter recorded the positions of ejecta particles at discrete times,
from which their trajectories could be determined. (2) Cintala et al.
(1999) improved on this method by using a strobed laser and a
CCD camera to record the trajectories. Once the trajectories were
known, ballistic equations were used to determine the launch po-
sition, speed and angle. (3) An optical technique originally devel-
oped in the fluid mechanics community for visualization of flow
fields was used by Schultz et al. (2000), Anderson et al. (2003),
Anderson and Schultz (2005), and Hermalyn et al. (2009). In this
method, images of a slice of the ejecta plume are acquired at differ-
ent times. Rather than tracking specific particles in the plume, a
cross-correlation analysis of image pairs is used to determine
material motions after launch. (4) Piekutowski (1980) and Housen
(2003) directly measured the subsurface material flow field, ejec-
tion velocity and position using a ‘‘quarter-space” technique in
which a thick window was used as the front vertical face of the tar-
get container. The impact (or in some cases an explosion) occurred
at a point along the target/window interface, which provided a
cross-sectional view of the crater formation. Colored marker parti-
cles and high-speed films were used to track the material flow. (5)
Screens or slotted plates have been used to mechanically isolate
specific parts of the ejecta plume to facilitate velocity measure-
ment from high-speed films (e.g. Oberbeck and Morrison, 1976;
Yamamoto et al., 2005b).
2 In the ejecta model developed here, the velocity is a scalar quantity. Therefore, we
use the terms velocity and speed interchangeably.

3 But note that the time at which a particle crosses the surface does depend on its
initial depth. 4
Another way to quantify the ejecta velocity distribution is to de-
fine the total mass, M(v), of material ejected with velocity greater
than v. Because ejection velocities steadily decrease as the tran-
sient crater expands, the mass of material with velocity greater
than v is also the mass of material having launch position less than
the corresponding value of x.

Three methods have been applied to measurement of M(v): (1)
High-speed films have been used to directly measure the size and
velocity of ejecta particles for rocky target materials (Gault et al.,
1963; Housen, 1992). (2) The velocities of high-speed fine ejecta
have been measured by placing thin witness foils around the
periphery of the target (e.g. Yamamoto and Nakamura, 1997;
Yamamoto et al., 2005a). The number and size of the holes and
the known penetration relationships for the foils determined the
mass of material with velocity greater than that needed to pene-
trate the foil. (3) The mass of material ejected to a given distance
has been measured by placing ejecta collectors at various distances
from the crater (e.g. Andrews, 1975; Stöffler et al., 1975;
Hartmann, 1985; Michikami et al., 2007). An ejection velocity for
each collector bin is calculated from the ejection angle (which is
either assumed or estimated from high-speed imaging), along with
assumptions about the launch position. M(v) is then determined
from the mass collected in each bin and the corresponding ejection
velocities.

Ejecta experiments reported in the literature generally adopt
one of the methods described above, and so provide direct mea-
surements of either v(x) or M(v), but not both.4 As a result, some
target materials have more information on v(x) than M(v), or vice
versa. In addition, the data were collected with varying impactor
size, speed, target density, strength, etc. That data must be scaled
in order to account for these differing conditions and to apply
the data to the large-scale events of the Solar System. This is the
purpose of ejecta scaling laws, discussed next.
3. Ejecta scaling laws

The scaling laws developed by Housen et al. (1983) for hyperve-
locity impact cratering were based on the experimentally verified
fact that the projectile appears as a point source when considering
any crater-related phenomena that occur very far from the impact
point: it has even been observed to hold as close in as one projectile
radius from the impact (Holsapple, 1993). Hence, the point-source
concept applies to the final crater size, the growth of the transient
crater and the majority of the observable ejecta field. We make use
of this point-source concept here. For further details, the reader is
A notable exception is Yamamoto et al. (2005b).
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referred to Holsapple and Schmidt (1987) and Holsapple (1993).
At the heart of the point-source concept is the existence of a sin-

gle measure, C, that entirely characterizes the impactor’s influence
on the cratering process in a given body. That measure must have
the form

C ¼ aUldm ð1Þ

where a, U, and d are the impactor radius, velocity and mass density
respectively. The power-law combination of those three impactor
properties into one single governing measure is a consequence of
the point source feature: there cannot be separate length or time
scales (Holsapple, 1993). The point-source assumption is appropri-
ate when the phenomena of interest occur at ranges greater than
the impactor radius, and for impact velocities greater than the tar-
get sound speed, although there are important cases where its
applicability is found to extend well inside those limits.

Data collected from the literature on cratering events in metals,
and dry soils, and with a variety of impactor materials, shows that
the exponent m on the mass density has the value of about 0.4
regardless of material type.5 On the other hand, the exponent l
is known to depend on the high pressure properties of the target
material, but must lie between the limits of momentum scaling,
where l = 1/3, and energy scaling, where l = 2/3 (Holsapple and
Schmidt, 1987). From many different experiments, l � 0.41 for
dry soils and l� 0.55 for nonporous materials, such as water, met-
als, or rock. The value of l for highly porous materials has not yet
been determined, but is expected to be less than 0.4.

The point-source measure determines the outcome of an impact
event in any given body. There are two different cases, depending
on the event scale. Small craters in cohesive materials form in the
‘‘strength regime”, because the bodies’ material strength deter-
mines the crater size. For larger craters, gravity forces dominate
any strength and thus gravity will determine the crater size. This
is the ‘‘gravity regime”.

The measure of strength, Y, deserves more discussion (Holsapple,
2009). There are many different strength measures of a material,
e.g., compressive, shear (which involves the cohesion), tensile
and others. In a metal, the compressive and tensile are about the
same, and the shear strength is about ½ of those. But in a granular
material, these strengths are not so easily related. The shear
strength is about 2–3 times the tensile, and the compressive
strength a factor of 5–20 times the tensile. Those ratios are deter-
mined by the angle of friction in the Mohr–Coulomb strength mod-
el. Thus, when scaling between materials with comparable angles
of friction, one can use any of these strength measures and predict
the same results. But when scaling to vastly different materials,
that is not true. Since the cratering process in relatively low-poros-
ity materials is dominated by shearing flow, perhaps the shear
strength is the best to use for scaling. For highly porous materials,
another strength determines the outcome: the ‘‘crush strength”,
i.e. the stress at which significant compaction of void space occurs.
And finally, one should note that any strength scaling uses some
strength with the units of stress. A cohesionless material such as
dry sand has no such measure. Its strength, the result of shear
resistance under confining pressure as described by the
Mohr–Coulomb model, does not qualify as a ‘‘strength” for scaling
5 The value of m = 0.4 is a consequence of the observation first made by Schmidt
(1980) that for impacts into granular materials at a given value of the gravity-scaled
impactor size (p2 = 3.22ga/U2), the cratering efficiency, defined as pV = qV/m, is
independent of the target or impactor density. Here, g is gravity, q is the target
density, m is the impactor mass and V is the crater volume. The combination of the
experiments reported by Schmidt (1980), as well as those reported by Schultz and
Gault (1985) show this to be true for target/impactor density ratios varying by a
factor of 1200. Additionally, Holsapple and Schmidt (1982) showed that m = 0.4 for
impacts into metals. As a result, the value of m is quite well constrained.
because it involves no material properties with units of stress: dry
sand cratering follows gravity scaling at all event scales.

In each of the strength and gravity regimes, the scaling laws for
ejecta can be cast in two forms, each of which has its advantages
depending on the application of interest. For cases where the initial
conditions of an impact are known but the final crater size is not
(e.g. the Deep Impact event), it is useful to express the ejecta veloc-
ity distribution in terms of the impactor properties. In that form,
the relations do not depend on the final crater size. On the other
hand, if only the crater size is known, but not the impact condi-
tions, then it is most convenient to express the scaling laws in
terms of the final crater radius. This second case would arise when
modeling the ejecta from, say, a given lunar crater for which the
impactor size, velocity, etc. are unknown.

Because ejecta scaling relationships have been derived else-
where, the full derivations are not presented here. Instead, the re-
sults are listed in Table 1 and an example is given that illustrates
how the results are derived. Further information is provided by
Housen et al. (1983) and Holsapple (1993).

Consider the ejection velocity versus position for an impact in
the gravity regime. That velocity, v, is written as a function of the
point-source measure, the target density q, surface gravity g, and
launch position x:

v ¼ f ðaUldm;q; g; xÞ ð2Þ

This expression involves five quantities and three independent
dimensional units and can therefore be written in terms of two
nondimensional variables in various, but equivalent, ways. One
such form is:

xvlqm

aUldm ¼ f
xðgxÞl=2qm

aUldm

 !
ð3Þ

which can be seen to be nondimensional and maintains the point
source grouping of the impactor parameters. Rearrangement of this
expression and taking the 1/l root gives the scaling law for the
gravity regime:

v
U
¼ x

a
q
d

� �m
� ��1=l

f̂
x
a

ga

U2

� �l=ð2þlÞ q
d

� �2m=ð2þlÞ
 !

ð4Þ

where f̂ ðxÞ ¼ f 1=lðxð2þlÞ=2ÞÞ. Although this scaling law can also be
written in various other forms, we note that all are equivalent in
the sense the fundamental dependence of ejection velocity on
launch position, impact velocity, etc. does not depend on the partic-
ular form chosen.

Housen et al. (1983) noted that gravity should be important
only for the furthest launch positions, which are near the crater
edge. Inward from the edge, i.e. closer to the impact point, the ki-
netic energy associated with a particle in the excavation flow is
large compared to both the work done against the gravity-induced
shear strength of the target material and the change in gravita-
tional potential energy incurred as the particle travels to the sur-
face. Therefore, inward from the crater edge, the gravity-term in
Eq. (4) should be insignificant and the scaling relation simplifies to

v
U
¼ C1

x
a

q
d

� �m
� ��1=l

ð5Þ

where C1 is a constant to be determined from fits to data. As dis-
cussed below, the effect of gravity can be seen in some measure-
ments of ejecta velocity, but the effect is usually small, and Eq.
(5) provides a useful description of most of the ejecta field, until late
in the flow.

If the flow were arrested by target strength rather than gravity,
there would be a combination of terms with the strength on the
right hand side of Eq. (4), but the strength would have also dropped



Table 1
Scaling laws for the ejection velocity and crater size.

Crater radius
Crater size
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Mass ejected from inside x
MðxÞ ¼ kqx3
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In terms of crater radius
Strength regime : MðvÞ
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1

The symbols C1, . . . , C6, H1, H2, and k are constants.
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out when considering launch points inward from the crater edge
using the same argument. Then we again would arrive at Eq. (5).
Such a form is used below in Section 6. Thus, the form of the scal-
ing law is the same in either strength or gravity-dominated im-
pacts, but the range of x/a over which it holds will be shown to
be different. The validity of this assumption will be tested when
Eq. (5) is compared to laboratory data.

Now consider the form of the ejection velocity scaling law cast
in terms of the final crater radius. In the gravity regime, the appar-
ent radius, R, of the final crater is determined by some function

R ¼ f ðaUldm;q; gÞ ð6Þ

Using Eqs. (2) and (6) to eliminate the point-source measure gives
the velocity in terms of the crater radius

v ¼ f ðR;q; g; xÞ ð7Þ

The target density cannot occur in Eq. (7), because it is the only
variable involving units of mass. The remaining four variables in-
volve only the two independent dimensions of length and time,
so there is a relation between two nondimensional variables:

vffiffiffiffiffiffi
gR

p ¼ f
x
R

� �
ð8Þ

which describes the ejection velocity at all launch positions for a
gravity-dominated crater. There is an apparent dependence on the
gravity g in this expression – in the left term and inherently in
the crater radius R. But, as mentioned above, v should not depend
on gravity for launch points inward from the crater edge. The only
way that this can occur in Eq. (8) is if the function f is a power-law
in its argument so that the dependence of R on g cancels the square
root of g on the left. The nondimensional form of Eq. (6) can be used
to show that R is proportional to g�l=ð2þlÞ. As such, Eq. (8) is inde-
pendent of g if and only if

vffiffiffiffiffiffi
gR

p ¼ C2
x
R

� ��1=l
ð9Þ

which is easily verified with a little algebra. It should be noted that
Eqs. (5) and (9) are entirely equivalent descriptions of the ejecta
velocity distribution. The choice of which to use is a matter of which
variables are known for a given problem: the impactor conditions or
the crater size.
Using similar arguments, the scaling laws for v(x) and for M(v)
can be determined. They are listed in Table 1 for both the strength
and gravity regimes.

Note that the impact angle was not included in the above anal-
ysis. For oblique impacts, the ejecta fields need not be symmetric
around the impact point: generally more high-speed ejecta will
be launched down-stream (e.g. Anderson et al., 2003, 2004). That
result is not precluded in the point-source assumptions, there is
just a different point source solution for each impact angle, and
the ejecta distributions will have an azimuthal angle dependence.
Again, experiments are required to delineate the range for which
that point-source result is valid (as discussed next), and specifically
it may not hold for the earliest, highest-speed ejecta. But, it is
known that many of the latest-stage results such as the final crater
size and shape become simply related to the normal component of
impact angle, and there is no observed asymmetry.

We make further comments about this case below.
3.1. Limits of applicability

When interpreting ejecta experiments, it is important to under-
stand the conditions for which these scaling laws may apply. At
and near the impact point, the point source does not apply and the
scaling is separately dependent on d, a and U (Holsapple, 1993). Con-
sequently, distances scale with impactor radius a, velocities with U,
pressures scale as dU2, masses with da3 and so on. There is a cylindri-
cal core in which no material is launched upwards: the material right
under the impactor is driven down, and never remerges at the sur-
face. The extent of that core depends on details such as the projectile
shape and velocity. Therefore, the power-law forms based on the
point-source measure shown in Table 1 must break down for small
x. This is illustrated in Fig. 2. Part (a) of the figure shows that the
point-source approximation holds only beyond some minimum dis-
tance which, for everything else fixed, is proportional to the impac-
tor radius, i.e. x = n1a where the multiplier n1 depends on details
such as impact speed, projectile shape, materials, and so on. More
details are given below.

At greater distances from the impact, power-law scaling applies
to the ejecta up to a distance near the crater edge, where the effects
of gravity or strength arrest the flow to zero. Because this is the
same mechanism responsible for determining the crater size, the
location where the power-law breaks down is proportional to



Fig. 2. (a) Point-source scaling only applies beyond some minimum distance from the impact. Power-law scaling holds from that point out to the location where gravity or
target strength begin to arrest the cratering flow near the crater edge. (b) Schematic illustration of the behavior of the relation between ejection velocity and launch position.
The highest velocities at the left are comparable to the impactor velocity. The middle portion of the distribution is a power-law, as expected from the point-source scaling
analysis. At the right the cratering ceases and the velocities drop to zero. Part (c) shows the same behavior for the mass of material ejected to speeds greater than v. Here the
maximum value on the ordinate is the total mass of ejected material, some fraction of the cratered mass.
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the crater radius R. As discussed below, this proportionality con-
stant is close to 1.

Fig. 2b shows the expected shape of the distribution of ejection
velocity versus position on logarithmic axes. For small values of x,
there is no ejecta, or it does not follow the power-law form. The
power-law relationship given in Eq. (5) holds for the intermediate
range of launch positions. Near the crater edge, the distribution
must steepen because gravity or strength eventually stop the flow
and all velocities approach zero.

Fig. 2c shows a similar behavior for the mass of ejecta with
velocity greater than v. The high-velocity ejecta originate near
the source, and the low velocity ejecta originate near the crater
edge. The points that delimit the applicability of the power-law
on this plot are shown as vertical dashed lines. At small values of
the ejection velocity, the distribution flattens because of the effects
of gravity or strength and approaches the total mass of ejected
material.

Near the source, right at the projectile-body interface, a small
mass of very high-speed material can be ejected by the ‘‘jetting”
process (e.g. Yang and Ahrens, 1995). Jetting occurs when two sur-
faces collide at high speeds at a low angle. We ignore the jetting
process here because it depends on details of the projectile shape
and generally involves only a small mass of material. This is illus-
trated in Fig. 2b where the power-law terminates at the left end
and in Fig. 2c where the curve approaches a vertical asymptote
(ejecta mass goes to zero) at high ejection speeds.

Plots of M(v) based on experimental data can turn downward
from the power-law at high ejection speeds for another reason.
The mass of fast ejecta is usually quite small and is therefore hard
to observe in high-speed films, or to trap in collector bins due to
the large ballistic ranges involved. In many laboratory
experiments, the mass of the fast ejecta is a tiny fraction of a gram.
Failure to collect even a small amount of this high-speed material
can cause significant underestimation of M(v) at large v. This is
likely why it is common to see plots of M(v) with slopes that are
steeper than predicted by the scaling laws for large v.

Three additional important points should be made regarding
the limits of power-law scaling. First, the regime of power-law
scaling does not have sharply defined limits. That is, the effects
of gravity or strength do not suddenly switch on beyond a specific
point. However, as shown in the next section, the breakdown of the
power-law is sufficiently rapid that it is reasonable to define an
approximate region over which power-law scaling holds.

Second, the scaling of the ejecta velocity distribution can be ex-
pressed either in terms of the impactor properties, as in Eq. (5), or
the crater size, as in Eq. (9). Note that one of the ‘‘end points” of the
power-law regime depends on impactor size and the other end de-
pends on crater size. As a result, one cannot construct a plot for all
cases in which both end points are constant in a scaled sense. For
example, consider a plot of v(x) using the scaling given in Eq. (8).
The largest distance that the power-law holds is proportional to
R, so x/R is constant at that location. But the minimum distance
for which the power-law holds is x = n1a, or x/R = n1 (a/R). There-
fore, the left-hand point at which the power-law breaks down
written in terms of the crater radius depends on the ratio of impac-
tor size to crater size for a given impact. In general then, one can
expect the power-law to break down at various points for various
datasets depending on the specific impact conditions. This is true
for all plots of the ejecta velocity distribution, a point that is dis-
cussed further below.

Third, there are circumstances in which the power-law scaling
regime can be minimal or even nonexistent. For example if the
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impact velocity is very low, the crater may by only slightly larger
than the projectile and the power-law regime shrinks to zero. Sim-
ilarly, in gravity-dominated cratering, the crater edge forms rela-
tively closer to the impactor in large events than in small events.
Therefore, in sufficiently large events, the upper limit and the low-
er limit can squeeze together leaving little or no power-law region.
This is included in the ejecta model described in Section 6.

4. Sources of ejecta data

The number of experimental measurements of impact crater
ejecta velocity distributions has increased dramatically over the
past two decades. Results reported in the impact literature were
collected and are briefly summarized here. Each source of data is
identified by a reference number, e.g. R1, R2, etc. Table 2 summa-
rizes the data sources. The data are separated into measurements
of M(v) or v(x), then further sorted in order of increasing target
porosity. That same ordering is used in the summary given here.

4.1. Measurements of ejecta mass-velocity distribution

R1: Ejecta measurements for low-porosity materials are rare.
Perhaps the most widely cited data are those of Gault et al.
(1963), who impacted basalt at normal incidence with aluminum
spheres at 6250 m/s. M(v) was measured directly from high speed
film records. Gault et al. interpreted the measurements of M(v) at
low ejection speeds as being upper limits because M(v) exceeded
the total crater mass, which is physically impossible. When plotted
here, those data points are marked with arrows to indicate they are
upper limits. Based on the crater mass, the points in question could
not overestimate M(v) by more than a factor of about 2–3.

R2: Housen (1992) used high-speed films to measure M(v) for
1900 m/s impacts into weakly cemented basalt consisting of a mix-
ture of mm-size crushed basalt fragments, iron grit (to achieve a
desired bulk density), and fly ash as a binding agent. This material
was designed as a simulant of large-scale jointed rock. An alumi-
num plate with a slot was suspended above the target surface.
The plate allowed the impactor to pass through, but eliminated
all but a single plane of ejected material. The sizes and trajectories
(i.e. launch velocities) of the ejecta were determined from high-
speed films. Two materials were used: a weak one having compres-
sive and tensile strengths of 0.7 MPa and 0.09 MPa, and a stronger
Table 2
Sources of ejecta data.

Material Porosity Density (kg/m3) Speed (m/s

Measurements of M(v)
Basalt <few % 3000 6300
Weak. Cement. Basalt 23% 2600 1900
Glass l-spheres 36% 1500 240
Glass l-spheres 36% 1500 70–320
Glass l-spheres 36% 1500 190
Loose quartz sand 40% 1580 6800
Basalt powder 43% 1700 7–2300
Sintered glass beads 7–80% 400–2300 1200–4500
Perlite/sand 32–96% 100–1800 1800–2000

Measurements of v(x)
Water 0 1000 4.6
Rock and alluvial soil 0–30% – –
Dense Ottawa and 32% 1800 Explosion
Dense Ottawa sand 32% 1800 1.9
Glass l-spheres 38% 1600 2.0
Loose sand 40% 1600 1.0
Coarse sand 43% 1500 1.0
Coarse sand 43% 1500 0.8–1.9
Basalt gravel 43% 1400–1600 1.3
Perlite/sand 55–83% 400–1200 2.0
one with compressive and tensile strengths of 10 MPa and
0.45 MPa.

R3: Stöffler et al. (1975) fired Lexan cylinders into dry quartz
sand targets at speeds of 6000–7000 m/s. They used catcher bins
to measure the mass/area of ejecta as a function of range, r, from
the impact point. M(v) was obtained by an integration to find the
mass ejected beyond range r, and by calculating the ejection
velocity corresponding to each value of r. The ballistic equation re-
lates the range and ejection velocity: r = x + v2sin(2h)/g, where h is
the launch angle (assumed to be 45�) and g is the gravitational
acceleration. In this paper, two methods were used to calculate
the launch velocity. In the first, all ejecta were assumed to be
launched from the crater edge, x = R. This is obviously a good
approximation for ejecta with x � R. Additionally, as noted by Hart-
mann (1985), it is also reasonable for material with x� R because
those ejecta have high speeds, so that the launch position is small
compared to the v2 term in the ballistic equation. Therefore, the
calculated velocities are insensitive to the assumed launch posi-
tion. The second method entails using a relation for v(x) for sand
to eliminate the launch position from the ballistic equation (see
Housen et al. (1983) for details). The ejection velocities calculated
from these two methods differed by only �10% for the close-in
ejecta and �3% for the far-field ejecta. When plotting the data in
a form normalized by the apparent crater radius, a value of
R = 12.7 cm was used, based on a graphical estimation of the crater
profiles presented by Stöffler et al.

R4: Yamamoto et al. (2005a) used polycarbonate projectiles to
impact targets of loose soda-lime glass micro-spheres (236 ±
28 lm diameter) at a speed of�240 m/s. They placed thin aluminum
foils of various thicknesses around the periphery of the impact and
then counted the holes left by ejecta penetrations. The areal density
of holes along with a known relation between penetration velocity
and foil thickness gave M(v).

R5: Yamamoto et al. (2005b) also measured M(v) for targets of
loose glass micro-spheres (40 lm or 220 lm diameter) and poly-
carbonate projectiles (70–321 m/s). A slotted aluminum plate
was placed over the target container to allow passage of material
ejected in a single plane. Additionally, a partition was placed at a
distance x from the impact, thereby deflecting ejecta with launch
position less than x. A high-speed video camera was used to mea-
sure the speed of the ejecta just beyond the partition. By varying
the placement of the partition, they measured v(x). In a separate
) Crater Reference

Strength R1: Gault et al. (1963)
Strength R2: Housen (1992)
Gravity R4: Yamamoto et al. (2005a)
Gravity R5: Yamamoto et al. (2005b)
Gravity R6: Yamamoto et al. (2006)
Gravity R3: Stöffler et al. (1975)
Gravity R7: Hartmann (1985)
Strength R8: Michikami et al. (2007)
? R9: Housen and Holsapple (2003)

Gravity R10: Schmidt and Housen (1987) and present work
– R17: Perret and Bass (1974)
Gravity R11: Piekutowski (1980)
Gravity R12: Housen (2011)
Gravity R12: Housen (2011)
Gravity R13: Anderson et al. (2003)
Gravity R14: Anderson et al. (2007)
Gravity R15: Cintala et al. (1999)
Gravity R12: Housen (2011)
? R16: Housen (2003, 2011)
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experiment, the target was instead covered with an aluminum
plate having a circular hole of radius x centered on the impact
point. After an impact, they collected the mass of ejected material.
They then calculated M(v) from the measured mass of material
ejected from inside x and the velocity of material at that launch
position.

R6: Yamamoto et al. (2006) impacted glass micro-sphere
(220 lm mean diameter) targets with polycarbonate projectiles
at a speed of 192 m/s. Ejecta were collected in jars placed at vari-
ous distances form the impact. Bounds on the ejection velocity
associated with each collection jar were calculated from the range
of ejection angles observed in video records and on the limiting
cases of launch positions either at x = 0 or x = R.

R7: Hartmann (1985) impacted targets of loose basalt powder
(800 lm median grain size) at speeds ranging from 7 m/s to
2300 m/s. He measured the mass of material ejected beyond a gi-
ven range and estimated the ejection velocity for each range using
the first method described above for the Stöffler et al. (1975) data.
The total mass of ejecta was reported, as well as the fraction of
ejecta with velocity greater than v. In the present analysis, those
values were used to calculate M(v).

R8: Michikami et al. (2005, 2007) explored the effects of target
porosity and strength on the ejecta velocity distribution by con-
structing targets from sintered glass beads. The sintering process,
and the addition of glass microballoons were used to produce tar-
get porosities between 7% and 80%. Alumina projectiles impacted
the targets at speeds ranging from 1200 to 4500 m/s. The targets
were attached to a vertical face of the impact chamber and were
struck at normal incidence by the horizontally-moving projectile.
Most of the ejecta produced in the experiments were observed to
travel nearly perpendicular to the target surface (i.e. parallel to
the floor of the chamber). Ejecta were collected in bins at various
distances from the impact. The observed nearly-90� ejection angle
and the fall-distance to the chamber floor were used to calculate
the ejection velocity of material in the collection bins. The ejecta
masses and velocities were used to calculate M(v).

R9: Housen and Holsapple (2003) reported on impacts into por-
ous materials made from mixtures of sand, Perlite (a porous silicate)
and fly ash (a binding agent). The relative proportions of sand and
Perlite were varied to obtain bulk porosities between 32% and 96%.
The experiments were conducted on a geotechnic centrifuge, which
simulates the formation of large-scale craters with diameters of tens
of kilometers on asteroids.6 Ejecta were collected on a thin cloth laid
prior to the event around the anticipated periphery of the crater. For
the present analysis, the ejection velocity needed to reach the ejecta
collector was calculated by assuming that ejecta originated from the
crater rim and were ejected at an angle of 45�. Thus each experiment
yields the total mass of material ejected at speeds greater than that
needed to reach the collector cloth. The experiments at various
gravity (centripetal acceleration) levels provide data for different
ejection velocities, because higher accelerations require higher ejec-
tion velocities to reach the collector.

The assumption that ejecta originated near the crater rim is
justified because the edge of the collector cloth was close (typically
1–2 cm) to the crater rim. Thus, the slowest ejecta to reach the cloth
would originate near the rim. The assumed ejection angle is consis-
tent with laboratory measurements (e.g. Oberbeck and Morrison,
1976; Cintala et al., 1999). Furthermore, the calculated ejection
velocities are insensitive to the ejection angle, h. This results from
the fact that the ballistic range is proportional to sin(2h), and 2h in
this case is close to 90�. For example, a variation of 5� in h causes a
variation in the ejection velocity of less than 1%.
6 The effects of gravity are measured by the gravity-scaled parameter ga/U2, so
increasing the gravity g produces the same physics as increasing the impactor size a.
4.2. Measurements of ejecta velocity versus launch position

R10: The only experimental measurement of v(x) known to the
authors for a zero-porosity material is from an impact test (shot
208Q) into water reported by Schmidt and Housen (1987). The im-
pact occurred at 4600 m/s at normal incidence into a quarter-space
test fixture with an ambient pressure slightly above the vapor
pressure. Small plastic spheres placed on the water surface were
tracked in high-speed films. Schmidt and Housen (1987) were pri-
marily interested in crater growth and so did not measure ejection
velocities. For the present analysis, the films were re-analyzed to
measure v(x) for the plastic tracer spheres. Examination of the
films did not show any significant difference between the velocity
of the spheres and the water ejecta.

R11: Piekutowski (1980) reported the first measurements of
v(x) for crater ejecta. His experiments used small explosive charges
in a quarter-space fixture filled with dense Ottawa sand. Although
this discussion is primarily about impact cratering, Piekutowski’s
results are included here because the shallow-buried charges he
used are known to be good analogues of impact (Holsapple, 1980).

R12: One of the authors (KRH) has performed quarter-space im-
pact experiments in targets of dense sand, of glass micro-spheres,
of perlite/sand mixtures, and of basalt gravel. The impacts occurred
at normal incidence, at speeds ranging from 1400 to 1900 m/s, and
used polyethylene, magnesium, or aluminum cylinders as projec-
tiles. The tests were conducted in a vacuum chamber at an ambient
pressure of �10 mm Hg. Ejection velocities of colored marker par-
ticles were measured by tracking their trajectories. Additionally,
the total mass of material ejected above a given speed was deter-
mined by associating a volume element of material with each tra-
cer particle. The details of these experiments will be described in a
separate paper (Housen, 2011).

R13: Anderson et al. (2003) used a particle image velocimetry
(PIV) method to measure v(x) for an impact of a 6.35 mm diameter
aluminum sphere into loose sand (0.55 mm grain size) at an
impact speed of �1000 m/s. The data were plotted in the form of
v/(gR)1/2 versus x/R and were converted for use here into v and x
values by using an apparent crater radius of R = 8.1 cm (J. Ander-
son, personal communication).

R14: Anderson et al. (2007) measured v(x) using the laser-based
system of Cintala et al. (1999, see below). The targets were made
from the 0.5–1 mm fraction of commercial blasting sand. The pro-
jectiles were soda-lime glass spheres, 3.18 mm in diameter, with
speeds ranging from 320 to 1720 m/s. The data from a 1000 m/s
impact were plotted and are used here. The launch positions were
given in the form of x/Rr, where Rr is the ‘‘rim” radius of the crater
measured from the impact point to the top of the rim. The reported
crater size was used to calculate the launch position x. In the pres-
ent analysis, these data are normalized by the apparent crater ra-
dius, R. The apparent radius is estimated by assuming that the
ratio Rr/R is typically �1.3 (R.M. Schmidt, unpublished data).

R15: Cintala et al. (1999) used a strobed sheet of laser light to
measure v(x) for impacts of 4.76 mm diameter aluminum spheres
into the 1–3 mm fraction of commercial blasting sand. The impact
speed ranged from 800 to 1900 m/s. As in the discussion of Ander-
son et al. (2007) above, the reported rim radii were converted to
apparent radii using Rr/R = 1.3.

R16: Housen (2003) described quarter-space impact experi-
ments in porous targets made from mixtures of Perlite, quartz
sand, and water. The targets, which were dried in an oven prior
to testing, had a small cohesive strength as indicated by the ability
of the material to support a vertical cliff of height 0.1 m cut into the
material. Given that the cliff height was greater than the crater
depth, the experiments were likely strength dominated. The mate-
rial was too weak to be used in conventional compression or ten-
sile tests. However, the lithostatic stress at the base of the



Fig. 3. Ejecta velocity measurements from Cintala et al. (1999) for dry sand, a
gravity-dominated material. (a) Data for four impact velocities, plotted simply as
ejection velocity versus launch position. The crater rim for each experiment is
shown by a small tic on the abscissa, with each tic labeled by the impact velocity in
km/s. (b) The same data but plotted in scaled form that correlates the results for
different impact speeds.
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vertical cliff, qgh = 1000 � 9.8 � 0.1 � 1 kPa provides a lower bound
on the strength. An upper bound of 7 kPa is derived from a similar
Perlite/sand mixture that used a small amount of binding agent. A
nominal value of 2 kPa is used here for the tensile strength. The
target porosity ranged from 55% to 67%. Colored tracer particles
were used to measure v(x) as the tracers passed upward through
the original plane of the target surface.

R17: Perret and Bass (1974) reported material particle velocities
from large underground nuclear explosions in rocks and alluvial
soils. Although explosion experiments, those data provide useful
information for low-porosity materials where impact data are rare.

5. Influence of impactor and target properties on the ejecta
velocity distribution

In an ideal situation from the point of view of scaling, data
would be available from ejecta experiments that include controlled
variations of all variables that describe the impactor, the target,
and ambient conditions. Although the literature now contains a
relative abundance of ejecta data compared to the situation two
decades ago, there are still significant holes in the database. For
example, there are no experiments in which the impactor size is
varied while holding all else constant. Additionally, it is very diffi-
cult, if not impossible, to independently vary the porosity, density,
and strength properties of the target material. Nevertheless, many
important aspects of scaling can be addressed using the current
database.

When plotting data in a scaled form involving the crater size,
the final size of the apparent crater (Fig. 1) is used. Literature data
originally reported in terms of the rim radius are converted to
apparent radius using a ratio of rim radius/apparent radius = 1.3,
which is typically observed in these small impact experiments in
cohesionless soils.

5.1. The effect of impact velocity

In the experiments reported by Cintala et al. (1999) for impacts
into coarse sand, the impact velocity was varied from 800 m/s to
1.9 km/s while holding all else constant. Those results provide an
excellent method to examine the effect of impact velocity on the
ejecta velocity distribution v(x). Fig. 3a shows the results from four
of the experiments, plotted simply as launch velocity versus posi-
tion. The data are ordered consistently in terms of impact velocity,
i.e. the results for the lowest impact speeds have the lowest ejec-
tion velocity at a given launch position. Note also the apparent
power-law behavior that extends to locations very near the crater
radius (those radii are marked on the abscissa by small tics) indi-
cating the range of the point-source assumption.

Fig. 3b shows the data in scaled form as per Eq. (5) and Table 1.
In this form, the results for the various impact velocities collapse
into a single trend, to within the scatter inherent in the measure-
ments. In addition, the trend is well described as a power-law.
The significance of these two observations is now discussed.

The collapse of the data onto a single trend in Fig. 3b is note-
worthy because it shows that the scaling analysis did not exclude
an important variable. Suppose, for example, that a variable such
as the wave speed, c, of the target material had a significant effect
on ejection velocity. Then in nondimensional form, v/U = f(x/a, q/d,
c/U) which allows an additional dependence on the impact velocity
via the c/U variable. The data in Fig. 3b show that v/U is simply a
function of x/a and q/d with no additional dependence on impact
speed U. Therefore, for these data7 the function f does not depend
7 The wave speed in sand is typically of order 100 m/s. Thus, even the slowes
impact shown in Fig. 3 is several times larger than the target wave speed. One canno
use these data to rule out a dependence on c at much lower impact speeds.
t
t

on wave speed, and v is independent of c. This argument can be ex-
tended to any variable whose units involve time.

A similar argument can be made about other variables. If there
were a dependence on the grain size, s, of a soil, the scaling relation
for ejecta velocity would be v/U = f(x/a, q/d, s/a). Variations in the
impact velocity alone would not provide any information on the ef-
fect of s because the term s/a would be fixed. Instead, one would
need to vary either the grain size or the impactor radius while
holding all other (nondimensional) variables constant. The subject
of grain size is addressed in Section 5.5.

The experiments of Hartmann (1985) into basalt powder also
provide an interesting look at the effect of impact velocity because,
even though the projectile size and type were not held constant,
the impact velocity varied by more than a factor of 400. Fig. 4
shows his results for the mass distribution in scaled form, along
with those into dry sand of Stöffler et al. (1975). Each dataset
shows the behavior described in Section 2. For example, consider
the results for shot 256, an impact at 2321 m/s. For the slower ejec-
ta speeds, the data follow the expected power-law slope for a gran-
ular material with l = 0.41 (the value for dry sand). Moving toward
higher ejecta speeds, the data trend steepens and then terminates
at the speed corresponding to the largest distance that ejecta could
be collected. In films of his experiments, Hartmann (1985) ob-
served high-speed ejecta that could not be collected because it
was moving at speeds several times greater than that needed to
reach the most distant collector. As a result, M(v) was underesti-
mated at the high-speed end of each dataset shown in Fig. 4. Thus,
the steepening of the data at high ejection speeds is at least



Fig. 4. Measurements of the mass of ejecta with speeds exceeding a value v from
impacts into basalt powder (Hartmann, 1985) and dry quartz sand (Stöffler et al.,
1975). Each dataset follows the general behavior illustrated in Fig. 2c, i.e. a power-
law slope at low ejection speeds with a steeper slope at high speeds.
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partially due to this uncollected high-speed material. If a suffi-
ciently large test chamber were available, the data would be ex-
pected to follow along the downward power-law slope until
reaching ejecta speeds where the point-source measure breaks
down.

All of the data with impact velocity above 158 m/s are consis-
tent with the power-law slope corresponding to l = 0.41, although
the results for the three slowest tests fall below that trend. Shots
248, 257 and 237 were all at or well below 158 m/s, which is com-
parable to the sound speed in sand. Thus, an additional depen-
dence on c/U could be expected and be responsible for the
deviation from the power-law. Moreover, for shots 248 and 257
the total mass of ejecta was less than one impactor mass and the
ejecta velocities approach the impact velocity. Clearly, the crater
was not large compared to the impactor. As noted in Section 2,
the point-source measure is not expected to apply in that case
and the curve should steepen as v/U approaches one, consistent
with the behavior shown in Fig. 4.

5.2. Impact angle

The angle between the projectile trajectory and the impacted
surface can have an important effect on the cratering and ejection
process. Although some progress has been made in studying obli-
que impacts, the data available at the time of this writing are not
sufficient to develop a comprehensive model that includes impact
angle, especially for highly oblique impacts. Therefore, the primary
case considered here is that of normal, or nearly normal impact an-
gles. Nevertheless, some qualitative observations can be made
based on the current data.

Gault and Wedekind (1978) performed oblique impact experi-
ments in particulate targets and found that the craters were circu-
lar as long as the impact angle was greater than about 30� from the
target surface. Although ejecta distributions were not measured,
this suggests that the late-time cratering motions are not strongly
influenced by impact angles greater than 30�. Lower speed exper-
iments with basaltic sand produced circular craters for impact an-
gles greater than about 20� with respect to the target surface
(Hessen et al., 2007). Although the craters were circular, Hessen
et al. noted some asymmetries in the ejecta blanket for impact an-
gles as high as 60�.

Direct measurements of the ejecta velocity distribution for 30�
impacts in sand were reported by Anderson et al. (2003). Their re-
sults showed a significant dependence of ejection velocity on azi-
muth. Similar results for 30� impacts were reported by Hermalyn
et al. (2008).
Yamamoto et al. (2006) measured ejecta velocity distributions
for oblique impacts (192 m/s) in glass micro-spheres. They found
M(v) to be insensitive to impact angle as long as the angle was
greater than 45� from the target surface. Interestingly, when M(v)
was plotted in scaled form in terms of the crater radius (bottom
right cell of Table 1), the velocity distribution showed no discern-
able dependence on impact angle. Evidently, the crater radius ac-
counted for the effect of variations in impact angle, and it is
thought to scale with the normal component of the impact speed.
Note, however, that Yamamoto et al. (2006) only measured the
low-speed ejecta, i.e. the material deposited within several crater
radii. Measurements of the high-speed ejecta (Yamamoto et al.,
2005a) showed a significant dependence on impact angle, even
when plotted in the form scaled by the crater radius.

So, it is apparent that the highest-speed ejecta has a definite
dependence on the impact angle and is asymmetric. The later-
stage, lower speed contributions, and the final crater size, may be
symmetrical even for relatively low impact angles, and may scale
just as a normal impact, but using the normal component of impact
speed. Somewhere in between, at some intermediate ejecta veloc-
ities, there is the transition from an angle dependence to no depen-
dence. Quantification of these possibilities awaits more data and
analysis.

5.3. Projectile density

There are very few ejecta experiments in which the projectile
density was varied while holding all other variables constant. In
experiments to be reported elsewhere (Housen, 2011), quarter-
space targets made from dry dense F75 Ottawa sand (200 lm
median grain size, 1790 kg/m3 bulk density) were impacted by poly-
ethylene (d = 930 kg/m3), magnesium (1790 kg/m3), and aluminum
(2780 kg/m3) cylinders. The impact velocity varied from 1400 to
1900 m/s. As shown in Fig. 5a, the factor of 3 variation in impactor
density had a noticeable effect on ejecta velocities, even after the dif-
ferences in impact velocity are accounted for. As shown in Fig. 5b,
inclusion of the density ratio in the scaling with, m = 0.4 determined
from impact crater size, does a reasonable job of correlating the re-
sults for the different projectile densities. However, additional
experiments should be conducted to further understand how pro-
jectile density affects the ejecta velocity distribution.

5.4. Target strength

A significant influence of target strength, Y, on ejecta velocities
can be seen by comparing experiments in solid basalt (Gault et al.,
1963), weakly cemented basalt gravel (Housen, 1992), and sintered
glass beads (Michikami et al., 2007). Fig. 6 shows these data in the
form scaled by the impactor properties. Unfortunately, variations
in target strength are usually accompanied by variations in target
porosity, so it is difficult to separate the effects of these two vari-
ables. The experiments on weakly cemented basalt are an exception
because the cementitious binder (fly ash) is a minor constituent in
the target material. Therefore, strength can be varied without signif-
icantly changing porosity.

Consider first the data for weakly cemented basalt. Two targets
were impacted, one with a static compressive and tensile strength
of 0.7 MPa and 0.09 MPa and one with a compressive and tensile
strength of 10 MPa and 0.45 MPa. Both targets had a porosity of
23 ± 1%. The general shape of the ejecta distribution is seen to be
consistent with that described in Fig. 2c. There is a power-law region
in which both data curves coalesce: there the velocity distribution is
insensitive to material strength. It is difficult to estimate the scaling
exponent l from these data, but l = 0.41 is quite plausible as indi-
cated by the line in the figure. Moving toward higher speeds, the dis-
tribution tends to steepen. This could be due to an inability to



Fig. 5. Effect of projectile density on ejection velocities for impacts in dry sand
(Housen, 2011). Parts (a) and (b) show the results before and after applying the
point-source scaling to account for density variations.

Fig. 6. Ejecta velocity distributions for strength dominated targets. The data for
moderately porous materials (sintered glass beads and weakly cemented basalt) are
separated at the low ejection velocities, where target strength determines the total
ejecta mass, but coalesce at the higher ejection velocities, where strength effects are
not too important. The data for solid basalt lie well above the other data because the
low porosity of the basalt results in enhanced energy coupling into the target.

8 The data for solid basalt at low ejection velocities are shown with downward
pointing arrows because, as noted by Gault et al. (1963), measurement uncertainties
resulted in M(v) unrealistically exceeding the crater mass at the low-velocity end o
the distribution.
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observe the high-speed ejecta, or to the expected breakdown of the
point-source measure for points close to the impact. Moving back to
low ejection velocities, the power-law breaks down due to the ef-
fects of target strength as M(v) asymptotically approaches the total
ejecta mass. Here the strength does matter because the weaker
material ejects a greater mass.

Scaling laws can be used to show that the asymptotic (small v)
value of M(v)/m is proportional to ðqU2=YÞ3l=2. This in fact is the
scaling relation for final crater volume and merely states that the
total ejecta mass is proportional to the ‘‘crater mass”. For the
weakly cemented basalt targets, both the impact velocity and tar-
get density were constant (1900 m/s, 2600 kg/m3). Therefore, the
target with the higher strength should have a lower asymptotic va-
lue of M(v)/m, as observed. This is consistent with the fact that the
stronger target exhibited a smaller crater and a correspondingly
smaller total mass of ejecta.

The data for sintered glass beads show a behavior similar to the
weakly cemented basalt. Fig. 6 shows results for two glass-bead
targets: one with 30% porosity and 0.45 MPa tensile strength and
one with 43% porosity and 0.04 MPa tensile strength. The effects
of strength and porosity are hard to separate in these data because
neither variable was constant. Nevertheless, the data coalesce at
the higher ejecta velocities, where strength should not be impor-
tant (note they also coalesce with the weakly cemented basalt).
At low ejecta velocities, both of the glass-bead materials approach
horizontal asymptotes with the weaker material lying above the
stronger, as expected.

Although the data for glass beads and for weakly cemented ba-
salt are internally consistent in that the weaker material within a
given dataset lies above the stronger, there is an inconsistency be-
tween the two datasets. The unfilled square data points in Fig. 6
represent the glass bead target that had a porosity of 30%, which
is not too far from the 23% of the weakly cemented basalt. How-
ever, the tensile strength (2.4 MPa), density (1800 kg/m3) and im-
pact velocity (�4100 m/s) for the sintered glass result in a value
qU2/Y that is a factor of 1.7 times smaller than for the 0.45 MPa
weakly cemented basalt target (solid circles in Fig. 6). Therefore,
the asymptotic value of M(v)/m for the glass beads should be lower
than the weakly cemented basalt. Fig. 6 shows that the asymptote
is instead about an order of magnitude larger. This discrepancy is
hard to explain based on any strength measure. However, we note
that the glass-bead targets were oriented with a vertical surface,
and the projectile impacted horizontally. Thus any material broken
from the shock would just fall from the target, and would not be
ejecta in the usual sense.

The results for solid basalt targets lie significantly above and to
the right of those for the sintered glass beads or the weakly cemen-
ted basalt gravel.8 This is most likely due to the lower porosity of
the solid target, which results in much better coupling of the im-
pact energy and momentum. Lower porosity is also associated with
larger l, thus resulting in a steeper slope for the solid basalt com-
pared to the other materials in Fig. 6. Given the uncertainties in the
data at the low-velocity end of the distribution, the solid basalt
data are roughly consistent with the expected value of l = 0.55.

The variations due to target properties can largely be removed
by normalizing the data by the crater size, target density and (ten-
sile) strength. This is shown in Fig. 7 in which the data have been
plotted in the scaled form shown in Table 1 for the strength re-
gime. The weakly cemented basalt results fall on a common trend
about which the remaining data tend to cluster. The results for sin-
tered glass beads show a trend similar to the other datasets, i.e. a
power-law at the higher ejection velocities that flattens out at
the lower velocities, as expected due to the increasing effects of
target strength near the crater edge.

The consistency of the data shown in Fig. 7 is remarkable given
that the target strength varies by a factor of �350 and the porosity
varies from near-zero to 43%. Evidently, the various effects of tar-
get strength, density, porosity, and impactor properties are encap-
sulated in the crater size. It is interesting to note, however, that the
f



Fig. 7. The data shown in Fig. 6 are collapsed onto a common trend by plotting the
data in the form involving crater radius.

Fig. 8. Results of impacts into fine and coarse granular materials. Variation in the
ratio of projectile diameter (2a) to grain diameter (s) from 50 down to 0.32 had only
a minor effect on ejection velocities or crater profile.
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data for solid basalt show a steeper trend than do the data for
other, more porous materials. As discussed in Section 3 and as
shown in Table 1, M(v) is proportional to v to the power �3l. Tar-
get materials with the lowest porosity have larger values of l,
which is consistent with the steep slope exhibited by the data for
(low porosity, high l) solid basalt.

To first order, the data indicate that the power-law trend breaks
down when the scaled ejection velocity v(q/Y)1/2 is less than
approximately one, i.e. when the ‘‘dynamic pressure” of the ejecta
qv2 is about equal to the target strength Y. This condition has been
used in the past to define a minimum, or cutoff ejection velocity for
strength-dominated impacts, i.e. a non-zero ejection velocity at the
crater rim (e.g. Richardson et al., 2005). However, instead of dis-
playing a sharp cutoff, the velocity distribution is observed to grad-
ually flatten down to velocities at least two orders of magnitude
below the presumed cutoff. Note also that the majority of the ejec-
ta mass is in this low-velocity range so one cannot use that cutoff
to estimate the ejected mass. It is clear that much more needs to be
done in order to understand the effects of target strength, in partic-
ular in identifying the appropriate measure of strength.

5.5. Grain size

For impacts into fine-grained sands and for large-scale events,
the projectile, and thus the width of the stress pulse, is typically
much larger than the constituent grains. In this case the target
material is approximated as a continuum. On the other hand, if
the projectile is comparable to or smaller than the typical grain,
the grain size could have a significant effect on the energy and
momentum coupling and distribution and on the subsequent cra-
ter growth, material ejection, and so on. This possibility has been
noted in several studies, e.g. Cintala et al. (1999), Barnouin-Jha
et al. (2002) and Anderson et al. (2007).

Cintala et al. (1999) reported on experiments in which 4.76 mm
diameter aluminum spheres impacted coarse sand targets with
grain diameters in the range of 1–3 mm. The values of l deter-
mined from the ejecta velocity distribution v(x) were all larger than
the value of l determined from the dependence of crater size on
impact velocity. They attributed this to the fact that the ratio,
w = projectile diameter/grain diameter, was only �2.7. Anderson
et al. (2007) used the same ejecta velocity measurement method
as Cintala et al. (1999) and found a similar result when they im-
pacted sand targets with w = 4.5. But for relatively finer grains
(w = 11.5), Anderson et al. (2004) used a PIV method to measure
ejection velocity and found consistent values of l. If grain size is
the reason for the inconsistent values of l, these results suggest
that w should be at least 5 or 10 for the grain size effect to vanish.
The effect of grain size was also investigated in experiments by
one of the present authors (KRH). Fig. 8 shows the results of four
quarter-space experiments in which 12 mm (dia) � 12 mm (high)
aluminum cylinders impacted granular targets at 1000 m/s. The
impacts occurred at normal incidence in a vacuum chamber. One
of the targets was F75 sand, with a median grain diameter of
0.24 mm. The other three experiments used basalt gravel with
median grain sizes of 1.3 mm, 9.5 mm, and 38 mm. Overall, w ran-
ged from 50 (F75 sand) down to 0.32 for the coarsest gravel. The
inset on the right side of Fig. 8 illustrates the basalt gravel targets
prior to impact, with the white rectangle showing the size of the
projectile and the point of impact.

High-speed videos of the events were used to measure the
velocity of ejected grains as a function of their launch position. Sur-
prisingly, the results from the F75 sand and the two finest basalt
gravel targets agree very well. Thus, everything else being equal,
the granularity of the target apparently did not have a significant
effect on the ejecta velocity distribution in these experiments even
for w as small as 1.3 (shot 3674).

As shown in the bottom segment of the inset in Fig. 8, the im-
pact on the coarsest target (shot 3649) occurred on a gravel frag-
ment that was a few times larger than the projectile. The dust
generated in this super-catastrophic collision obscured much of
the video, so only one ejected fragment could be reliably measured.
Furthermore, it is possible that the result of shot 3649 may have
been quite different had the projectile hit between fragments. Nev-
ertheless, this single data point agrees well with the results from
the finer targets.

Although further work should be done to verify the results gi-
ven in Fig. 8, the velocity distribution even for very lumpy targets
may be quite close to that for fine-grained materials. If this is true,
then some other factor (e.g. material property or initial conditions)
must be responsible for the observations of Cintala et al. (1999).
5.6. Grain shape

The shapes of grains in granular materials could have an impor-
tant effect on ejecta because shape determines the amount of grain
interlocking which governs the resistance of the material to shear-
ing deformations. Thus, granular materials such as coarse angular
sands tend to have higher angles of internal friction, and corre-
spondingly higher shear strengths when confined with pressure,
than do materials composed of smooth spherical particles. Com-
paring impacts into dry sand with impacts into glass micro-spheres
provides a good test of the effects of grain shape because both
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materials have comparable mineral compositions, bulk densities
and porosities. However, the angular shapes of sand grains produce
an angle of internal friction of �30–40�, while that for glass
spheres is �20�.

Fig. 9 compares ejecta velocity measurements for dry sand and
glass micro-sphere targets using the scaling form in terms of the
impactor properties. The sand data cluster along a power-law
trend. The data for glass micro-spheres reported by Yamamoto
et al. (2005b) lie about a factor of 3 above the dry sand data. This
suggests that the low friction angle (low shear strength) of the
glass spheres causes an increase in ejection velocity at a given po-
sition. On the other hand, the solid black square symbols (Housen,
2011) in the figure are also for glass micro-spheres and agree quite
well with the dry sand data.

The main difference between the two sets of data for micro-
spheres is that the impact velocity of 1800 m/s for the Housen
(2011) experiments is considerably larger than the 70–320 m/s
used in the experiments reported by Yamamoto et al. (2005b). Re-
call from the discussion in Section 5.1 that the scaling accounts for
variations in the impact velocity. However, if the target wave speed
is important (which is expected when the impact velocity is com-
parable to or less than the target sound speed), the velocity distri-
bution need not be a simple power-law. Measurements reported
by Teramoto and Yano (2005) indicate that the wave speed for
glass spheres is between 100 and 200 m/s. Therefore much of the
Yamamoto et al. (2005b) data were from sub-sonic impacts, which
may be responsible for the discrepancy between the two sets of
data for micro-spheres shown in Fig. 9. At lower impact speeds
there is less energy dissipation, resulting in relatively larger craters
and ejection velocities. But the effect of grain shape or friction an-
gle on ejection velocity remains unclear at present. This question
could be addressed by performing a controlled set of experiments
in micro-spheres over a larger range of impact velocities, especially
the higher ones.

Indeed the Yamamoto et al. (2005b) experiments not only pro-
duced ejection velocities higher than for sand, they also produced
larger craters. As a result, when plotted in terms of crater size, all of
Fig. 9. The shape of grains in a granular material determines its resistance to shear (fricti
(Yamamoto et al., 2005b, labeled as R5), with a friction angle of�20�, lie significantly abo
spheres from Housen (2011, labeled R12) agree with the dry sand data. As discussed in t
material, impact speed and target material for each dataset.
the ejecta data for micro-spheres agree much better with that of
sand. This is shown in Fig. 10. Therefore, regardless of which factor
(friction angle, wave speed, etc.) was responsible for the high ejec-
tion velocities in the Yamamoto et al. (2005b) experiments, nor-
malizing the data by the crater radius accounts for this effect and
does a better job of collapsing the data onto a single power-law
trend. Stated another way, whatever the cause (a material prop-
erty, the sub-sonic impacts, energy dissipation, etc.), it affected
the crater size and ejecta characteristics in the same way.

5.7. Target porosity

As noted earlier, isolating the effects of target porosity is chal-
lenging because of difficulties in varying porosity without simulta-
neously varying other mechanical properties, such as strength.
Nevertheless, useful comparisons can be made, and an example
is shown in Fig. 11. Data for ejection velocity versus position are
shown for dry sands, with porosities of 30–40%, and for three mix-
tures of porous silicate (Perlite) and sand, whose bulk porosities
were 55%, 67% and 83%. The ejecta velocities for the 55% and 67%
porous materials are distinctly lower than those for dry sand, by
as much as a factor of 2 near the crater edge. This velocity reduc-
tion is not surprising given the energy losses that occur as the im-
pact shock crushes the pore spaces, especially near the impact
point where energy and momentum coupling occur. Additionally,
a regression to these data (excluding the points at the high ejection
velocities, where the point-source approximation breaks down)
gives a value of l = 0.35, which follows the expectation that in-
creased porosity corresponds to values of l closer to the momen-
tum scaling limit of 1/3. The data for 83% porosity show an even
more dramatic reduction of ejection velocity compared to dry sand.

Fig. 11 also shows that the ejection velocities for water are con-
siderably above and to the right of the data for sand. The compar-
ison with granular materials is complicated by the fact that the
porosity and the friction angle of water are both zero. Nevertheless,
the relatively high velocities for water are likely due to its low
porosity, which results in efficient coupling of the impact energy
on angle) and could therefore affect ejection velocities. Data for glass micro-spheres
ve those for dry sands, whose friction angle is 30–40�. However, data for glass micro-
he text, the reason for this difference is not yet clear. The legend lists the projectile



Fig. 10. The data in Fig. 9 are collapsed onto a common trend by plotting the data in the scaling form that involves crater radius. The apparent crater radius for 220l micro-
spheres (R5) was provided by Yamamoto (personal communication, 2009).

Fig. 11. Ejecta data for water, dry sand and highly porous silicates show how target porosity affects ejection velocities. The projectile energy and momentum are coupled well
into low-porosity targets, producing relatively high ejection velocities. Highly porous materials show relatively lower ejecta velocities because of inefficient coupling and
significant energy losses as the outgoing shock collapses pore spaces.
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and momentum. The data for water follow a slope corresponding
to l = 0.55, which is the same value inferred from measurements
of transient crater size in water and final crater size in metals9

(Holsapple and Schmidt, 1987).
Fig. 12 illustrates the effect of target porosity on the mass of

material ejected faster than a given velocity. The data for dense
sand, loose sand, and basalt powder all fall on a power-law trend
with l � 0.4. Comparison of the results for sand with those for
porosities of 55% and 67% shows that M(v) decreases as the poros-
ity of the target material is increased, in agreement with the trend
9 Note that the historical expectation that energy scaling with l = 2/3 should apply
for water craters has long ago been put to rest.
shown in Fig. 11, i.e. a shift toward lower ejecta velocities as poros-
ity increases. As in Fig. 11, the slope of the data for 55% and 67%
porosity is consistent with a value of l of 0.35.

The data in Fig. 12 for porosities of 70% and 96% are from the
centrifuge experiments of Housen and Holsapple (2003). Each cen-
trifuge experiment corresponds to a single data point on this plot,
i.e. the total mass of ejecta with speeds sufficient to land on the
ejecta collector cloth placed on the target surface (see Section
4.1). Experiments with higher acceleration (G) levels require higher
ejection velocities to reach the ejecta collector. Variation in the
acceleration level therefore provides data for different ejection
velocity values. Collectively, the data show a steady and substan-
tial decrease in ejection velocities as target porosity is increased.



Fig. 12. Data on the mass of material ejected faster than a given velocity illustrate how ejection speeds decrease with increasing target porosity.
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6. An ejecta model

In this section, an empirical ejecta model is developed that is
consistent with the point-source scaling laws. In principle, one
could perform regression fits to the entirety of data and determine
scaling laws for all materials including rocks, dense sand, loose
sand, micro-spheres, etc. But this would be unwieldy and is not
yet warranted by the breadth and quality of the data. Instead,
the approach taken here is to broadly sort the data into groups of
similar porosity and to provide scaling relationships for each
group. Materials with very low porosity such as water or consoli-
dated rock are simply referred to as low porosity and are assigned
a value of l = 0.55 (see Section 3). Various types of granular soils
near their maximum packing density usually have moderate
porosities in the range of 30–40%. Materials that fall roughly into
this category are assigned a value of l = 0.41. The value of l for
more highly porous materials is currently uncertain. Figs. 11 and
12 indicate a value of l = 0.35 for target porosities of roughly
60%, which is adopted here. The density exponent, m, is assumed
to be 0.4 for all materials (Section 3).

As noted in Section 5.2, experimental studies of ejecta are not
presently sufficient to completely illuminate the effects of impact
angle. The present model is based on data for vertical impacts
and therefore is not expected to apply to cases of significant obliq-
uity. For example, experiments have shown that impacts at 30� to
the target surface introduce a significant dependence of ejection
velocity on azimuth angle (Anderson et al., 2003; Hermalyn
et al., 2008), an effect that is not included here. On the other hand,
the results reported by Yamamoto et al. (2006) indicate that im-
pact angle has little effect on the velocity distribution as long as
the impact angle is at least 45� from the surface, except for the
high-velocity ejecta. Therefore, even though impact angle is not
explicitly included here, the present model should apply to cases
that are significantly off-normal and especially to the lower speed
ejecta.

The ejecta model is developed as follows. Recall that in the
gravity regime, Eq. (4) describes ejection velocity as a function of
launch position. The argument of the function in Eq. (4) is in terms
of x/a, but when written in terms of the crater radius R is actually
proportional to x/R, a fact that is easily verified by using the point-
source scaling law for crater radius in the gravity regime:
R
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where H1 is a constant. Use of Eq. (10) transforms Eq. (4) into the
simpler form
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where Y is the target strength. The point-source scaling law for cra-
ter radius in the strength regime is
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where H2 is a constant. This can be used to show that the argument
inside the function in Eq. (12) is again proportional to x/R. There-
fore, Eq. (11) describes the ejection velocity in the strength regime
as well as the gravity regime; the effects of strength and gravity are
embedded in the crater radius R.

But Eq. (11) needs to be modified for both small and large val-
ues of x for the reasons discussed in Section 3. We first discuss the
region near the crater edge, where ejection speeds are low. The ef-
fects of target strength or gravity cause a departure from the
power-law dependence for launch positions near the crater edge.
In Fig. 2 this was illustrated as an approach to a vertical asymptote
near the edge. This behavior is modeled here by assuming the ejec-
tion velocity goes to zero at a distance x = n2R and adopting (1 � x/
n2R)p for the function f in Eq. (11). That is,
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where the constant n1 is defined below and the constants n2 and p are
determined by fits to ejection velocity data. That gives a convenient
yet simple smoothing between the power-law regime and the verti-
cal asymptote. In the following analysis, separate values of n2 are al-
lowed for the strength regime (n2,S) and the gravity regime (n2,G).



Fig. 13. Comparison of the ejecta model and data for ejection velocity versus position. The results are plotted in the form scaled by the impactor properties. The parameters
used to generate the curves are shown in Table 3. The target material codes shown in the legend are: W = water, HR = hard rock, DS = dense sand, CS = coarse sand,
GMS = glass micro-spheres, BG = basalt gravel, PS = Perlite/sand mixture.

0 Available at http://www.keith.aa.washington.edu/craterdata/index.html along
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Richardson et al. (2007) and Collins and Wunnemann (2007)
develop a similar empirical form to account for the slowing of
the crater radius growth near the crater rim based on a term re-
lated to the work against gravity, but do not account for the scaling
forms. Since the processes at the termination of crater growth may
also be influenced by strength we eschew any motivation based on
energy arguments and adopt a simple empirical model consistent
with the scaling functional forms.

We also note that the particle velocity in cohesionless materials
is non-zero even well outside the crater. For instance, some mate-
rial is displaced upward to form surface uplift. Also, a thin layer of
material near the surface can be launched vertically (albeit at low
speeds) by the outgoing shock. While these effects are important
when considering processes such as erasure of surface features
on small bodies, this material is not considered as ejecta in the
classical sense. The present model is designed to apply only to
material that is launched from inside the crater.

As discussed in Section 3, the power-law behavior is also not ex-
pected to hold for launch positions close to the impact. There is a
region near the impact where no ejecta occur because the material
is driven downward. In the case of jetting there will be a small re-
gion where ejecta are produced, but it will not follow power-law
scaling. The current data are insufficient to clarify these details.
For the most part, the data for the velocity versus range are well
matched by the simple assumption that the power-law curve trun-
cates at a value of x = n1a, where n1 � 1.2, and the power-law holds
to that point. That assumption is adopted here, although we note
that, given the relative lack of data at high ejection speeds, further
work should be done to investigate the high-speed part of the
distribution.

A scaling law for the mass, M(v) of ejecta with speed greater
than v can be derived from Eq. (14). Because ejection speed de-
creases monotonically with increasing x, M(v) is equal to the mass,
M(x) of material having launch positions less than x, where v is the
launch velocity corresponding to position x. This mass is deter-
mined by the geometry of the streamlines of the material flow
and can be expressed in terms of the point-source measure as

M ¼ f ðaUldm;q; xÞ: ð15Þ
The point-source measure is the only quantity involving dimen-
sions of time in this expression and so cannot appear in a dimen-
sionally homogeneous relation. Dropping this quantity leaves a
relation between M, q, and x; three variables that involve two
dimensions (mass and length). As a consequence, they must be re-
lated by

M ¼ kqx3 ð16Þ

where k is a constant. The crater size has an associated mass
Mcrater = kcraterqR3. Based on an extensive cratering database,10 kcrater

is about 0.75 for cohesive soils, in the range of 0.6–0.8 for highly por-
ous materials, and 0.4 for dry sand. If scaled to crater size, Eq. (16)
becomes

M
Mcrater

¼ k
kcrater

x
R
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ð17Þ

At x = n2R this ratio must be less than unity, because the total ejecta
mass must be less than the crater mass, so the ratio of the two con-
stants cannot be much over unity. In fact, the crater volume is a sum
of three parts: the ejected mass, the uplifted mass near the crater
rim, and the volume due to compaction. So if compaction and uplift
are significant, the value of k/kcrater should be distinctly less than
unity, perhaps on the order of ½ for common soils and much smal-
ler for highly porous materials. Based on the values of kcrater quoted
above, this suggests values of k in the range of approximately
0.2–0.4.

Another estimate of k can be made by integrating the volume of
material above flow streamlines in a Z-model (Maxwell, 1977). The
Z-model is a special case of a point source with l = 1/Z (Holsapple
and Schmidt, 1987) but with an additional assumption of incom-
pressibility that may not hold for the highly porous cases. Integra-
tions of Z-model streamlines give k = 0.2 for a value of l = 0.4
(Z = 2.5), with larger values of k for smaller l.

Impact experiments by Yamamoto et al. (2005b) verified the
relationship in Eq. (16) and give a value of k = 0.47 for their glass
ith a crater calculation tool.
1

w
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Table 3
Summary of constants used in ejecta model.

Curve no. C1 C2 C3 C4 C5 C6 C7 C8

Target Water Rock WCB Sand Sand GMS SFA PS
Porosity �0 �0 20% 35 ± 5% 35 ± 5% 36% 45% 60%
Model of R10 R1 R2 R15 R3 R4–6 R9 R9
l 0.55 0.55 0.46 0.41 0.41 0.45 0.4 0.35
C1 1.5 1.5 0.18 0.55 0.55 1.0 0.55 0.6
k 0.2 0.3 0.3 0.3 0.3 0.5 0.3 0.32
H1 0.68 – – 0.59 0.59 0.8 – –
H2 – 1.1 0.38 – – – 0.4 0.81
n2,G 1.5 1.5 – 1.3 1.3 1.3 – –
n2,S – 1 1 1 1
p 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.2
a (m) 10�3 1.6 � 10�3 3.6 � 10�3 2.4 � 10�3 3.9 � 10�3 4.9 � 10�3 7 � 10�3 8.7 � 10�3

U (m/s) 4600 6200 1860 2000 6770 240 1900 1800
d (kg/m3) 2050 2700 2700 2400 1220 970 930 940
q (kg/m3) 1000 3000 2600 1600 1510 1500 1500 1200
Y (MPa) 0 30 0.45 0 0 0 4 � 10�3 2 � 10�3

Note: WCB = weakly cemented basalt, GMS = glass micro-spheres, PS = Perlite/sand mixture, SFA = sand/fly ash. All cases shown in this table used: v = 0.4, n1 = 1.2, g = 9.81 m/s2.

Fig. 14. Comparison of the ejecta model and data for ejection velocity versus position for gravity-dominated impacts. The results are plotted in the form scaled by the crater
radius (W = water, DS = dense sand, CS = coarse sand, GMS = glass micro-spheres, BG = basalt gravel).

11 The power-law portion of the distribution, i.e. for values of x that are large
compared to n1a but small compared to n2R, can be derived directly from Eqs. (5), (10)
(13), and (16). The power-law scaling laws are shown in the lower part of Table 1.
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micro-sphere targets. Direct measurements of k for other materials
were not available at the time of this study.

Taken together, the above arguments indicate that k is in the
range of 0.2–0.5 for various materials. Using these limits as guides,
we estimate k by fitting the ejecta model to laboratory impact data
as described below.

Equation (16) must be modified slightly because material inside
of x = n1a is driven downward and not ejected (Section 3). There-
fore, M(x) must go to zero at x = n1a. In order to model this behav-
ior, Eq. (16) is replaced by

M ¼ kq x3 � ½n1a�3
� �

ð18Þ

Returning to the derivation of a scaling law for M(v), for a spher-
ical impactor with mass m = 4pda3/3, Eq. (18) is written as
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Eqs. (14) and (19) form the basis for the ejecta model. Complete dis-
tributions for v(x) and M(v) are obtained numerically as follows.11

Given a set of initial conditions for an event of interest (i.e. g, a, U,
q, d, Y), the relevant scaling law (Eqs. (10) and (13)) is used to deter-
mine the crater size for the event. Eq. (14) is then used to tabulate
ejection velocities for a range of values of the nondimensional
launch position x/a. For each value of the launch position, Eq. (19)
gives the mass of material launched faster than the corresponding
velocity. Example calculations for the ejecta model are now com-
pared to the ejecta data discussed above.

Fig. 13 shows curves generated from the ejecta model for four
cases ranging from low to high porosity. Each curve is labeled by
a number (e.g. C1, C2, etc.). The parameters used to generate each
curve are listed in Table 3. In order to construct the curves, values
,
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of the parameter C1 were chosen to pass the power-law portion of
the curves through the corresponding data. The constants that
determine the approach to a vertical asymptote (n2,S, n2,G, and p)
were selected to fit the data at low ejection speeds when available.
The termination of the power-law at high speeds, determined by
n1, is at present uncertain due to a lack of data at high speeds (such
measurements are difficult). However, we note that the adopted
value of n1 = 1.2 is not inconsistent with the available ejecta data.
The constants (H1 and H2) shown in Table 3 for the crater size scal-
ing relation were determined from fits to measurements of appar-
ent crater size where available.
Fig. 15. Comparison of the ejecta model and data for ejection velocity versus position for
radius (PS = Perlite/sand mixture).

Fig. 16. Comparison of the ejecta model and data for the mass of material ejected wi
properties [B = basalt, WCB1 = weakly cemented basalt (Y = 0.09 MPa), WCB2 = weakly
SG = sintered glass beads, PS = Perlite/sand mixture].
Fig. 14 shows the data in the scaling form that involves the cra-
ter radius for gravity-dominated cratering. Only the data from
gravity-controlled experiments are shown. The curves are based
on the ejecta model shown in Eq. (14) and the gravity-regime scal-
ing law for crater radius. It is interesting to note how plotting the
ejecta data in terms of crater radius nearly collapses the data for
moderately porous materials (e.g. sand) and those for water onto
a common trend.

The experiments that used the highly porous Perlite/sand mix-
tures in Fig. 13 are believed to be strength dominated (Section 4).
Therefore, Fig. 15 shows those data plotted in terms of crater
strength-dominated impacts. The results are plotted in the form scaled by the crater

th speeds exceeding v. The results are plotted in the form scaled by the impactor
cemented basalt (Y = 0.45 MPa), GMS = glass micro-spheres, BP = basalt powder,



Fig. 17. Comparison of the ejecta model and data for the mass of material ejected with speeds exceeding v for gravity-dominated impacts. The results are plotted in the form
scaled by the crater radius (GMS = glass micro-spheres, BP = basalt powder).
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radius using the form appropriate for the strength regime. As can
be seen, the resulting model curve fits the data in Fig. 15 reason-
ably well.

Fig. 16 shows the data for M(v) plotted in terms of the impactor
properties. The model curves were generated by choosing values of
k that made the power-law portions of the curves pass through the
data. As shown in Table 3, the resulting values of k are consistent
with the values quoted above. Note that the value of k not only
determines the y-intercept of the power-law portions of the
curves, it also determines the value of the horizontal asymptote,
i.e. the total ejecta mass. The value of k that fits the power-law por-
Fig. 18. Comparison of the ejecta model and data for the mass of material ejected with sp
scaled by the crater radius [B = basalt, WCB1 = weakly cemented basalt (Y = 0.09 MPa), W
tion of the data also resulted in a horizontal asymptote that is con-
sistent with the data at low ejection speeds. Figs. 17 and 18 show
the data and model curves for M(v) in terms of crater size. The cra-
ter scaling parameters are shown in Table 3.

The ejecta model, along with the constants given in Table 3, can
be used to calculate the ejecta velocity distribution for a given im-
pact event. From those follow a number of important features,
including range of ejecta, regolith on small bodies, momentum
magnification for asteroid deflection considerations, and so on.
Examples of practical applications will be given in subsequent
papers.
eeds exceeding v for strength-dominated impacts. The results are plotted in the form
CB2 = weakly cemented basalt (Y = 0.45 MPa), PS = Perlite/sand mixture].
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7. Conclusions

Ejecta data from the literature and from the authors’ own stud-
ies were summarized for a variety of target materials. The data, in
conjunction with scaling theory, provide significant insights into
how the ejecta velocity distribution depends on the conditions of
an impact event. As discussed in Section 5, the dependence of ejec-
tion velocity on some variables, such as the impactor velocity and
density are fairly well understood and follow the behavior ex-
pected from scaling theory. The dependences on other variables,
primarily the properties of the target material, are only poorly
understood. Thus, a number of significant questions remain to be
studied.

One of the least understood target properties is material
strength. This is in part due to a lack of impact experiments on
strength-dominated materials, but also to the fact that strength
measurements are often difficult and expensive to perform. This
is compounded by a basic lack of understanding of which strength
properties (tension, shear, compression) are important and should
be measured. Another complication associated with target proper-
ties is that the governing strength of many geological materials
(certainly rock, but also some cohesive soils) depends on the event
size scale.12 As noted in Section 1, a direct application of laboratory
impact experiments in rock would indicate that the surfaces of rocky
asteroids smaller than�70 km diameter should be essentially barren
because nearly all ejecta should exceed the escape velocity; a predic-
tion clearly at odds with observations of asteroid surfaces. A general
weakening of rock at large scales undoubtedly results in ejecta
velocities much lower than those measured in lab experiments that
use pristine targets. A complete ejecta model should include this size
effect for rocky materials and will be the subject of a future study.
For the present, it is required to pick a strength value representative
of the event size in question.

Other target properties need further study as well. For example,
it was noted in Section 5.6 that the ejecta velocities measured for
glass micro-sphere targets by Yamamoto et al. (2005b) were con-
siderably higher, in a scaled sense, than those of Housen (2011).
The most significant difference between those two studies was
the impact velocity (one being sub-sonic, the other supersonic).
Additionally, there are other studies at relatively low velocities
where the general scaling based upon the point-source approach
becomes questionable. Thus, further work is required to collect
all of the lower speed data under the scaling umbrella.

Target porosity has recently emerged as a fundamental material
property with significant effects on the ejecta velocity distribution.
Energy losses during compaction of pore spaces cause a reduction
in ejection speeds. Under certain conditions identified in Section 7,
speeds may be low enough that ejecta do not escape the crater,
thus forming a crater without an associated ejecta blanket in the
usual sense. Suppression of ejecta blankets requires reduced ejec-
tion velocities and crater formation primarily by permanent com-
paction of the target material. Although this phenomenon has
been demonstrated in laboratory experiments (Housen and Hols-
apple, 2003), it is not completely understood. Does compaction
cratering, in which crater size is proportional to impactor size, oc-
cur at all size scales in a porous material, or does gravity become
important at some size scale? If so, suppression of ejecta would
be limited to a range of crater sizes. Does compaction cratering
and high target porosity require non-zero cohesion in the target?
If so, how much?

The lack of data on the high-speed portion of the ejecta distribu-
tion was also noted. Therefore, the parameter n1 in the present
12 Either because the target strength inherently depends on size scale (e.g. rocks
exhibit many more fractures at large scales than small), or because the strength varies
directly with deformation rate, and loading rates decrease with increasing size scale.
ejecta model is uncertain. Further experimental, and perhaps
numerical studies of the high-speed ejecta would be useful.

Much progress has been made in the past two decades in under-
standing ejecta velocity distributions from impact events. Never-
theless, these crucial questions must be addressed before we can
reliably model the impact evolution of planetary bodies or use
observations of cratered objects to infer the properties of their sur-
face materials.
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