
[circa 2017-02-24; PRAMS_2.9]

Obtain and install/build the necessary code files

Prerequisites:
1) Fortran (95+) compiler (e.g., gfortran 4.6+, ifort, pgf90)
2) C compiler (e.g., gcc, icc, pgcc)
3) Python 2.6+ or Python 3.2+ (note that all Python scripts use ‘#!/usr/bin/env python’)
4) NetCDF (must have been compiled with Fortran 90+ bindings; version 4+ is preferable;
http://www.unidata.ucar.edu/software/netcdf/)

Optional Prerequisites:
5) MPI [e.g., Open MPI (http://www.open-mpi.org) or MPICH2
(http://www.mcs.anl.gov/research/projects/mpich2/); must have been compiled with Fortran
90+ bindings] for parallel runs
6) NCL (http://www.ncl.ucar.edu/) for grid placement visualization
7) nco (http://nco.sourceforge.net/) for subsetting NetCDF-format GCM output (in time)

(1) Download and unpack the universal_lib source code tree

From a compressed archive: Decompress and extract the universal_lib archive in a
directory of your choice (e.g., /home/user/PRAMS ; will automatically be unpacked into a
subdirectory named universal_lib):

bzip2 dc universal_lib1.2_r27fs_dist.tar.bz2 | tar xvf ;

 -OR-

From the (private) bitbucket.org repository using git: Change to a directory of your choice
(e.g., /home/user/PRAMS) and execute the below command (the placeholder
bitbucket_repository_URL should be something like
https://some_user@bitbucket.org/some_user/universal_lib.git). The
repository contents will automatically be placed into a new subdirectory named universal_lib:

git clone {bitbucket_repository_URL};

(2) Configure and build the universal_lib source code tree

Change directory:

cd universal_lib/infrastructure/build/build_env_config;

Copy “user_change_me-*” files most relevant to your computer system to this directory – for
example:

cp examples/gfortran_gcclinux/user_change_me* . ;

http://www.unidata.ucar.edu/software/netcdf/
http://nco.sourceforge.net/
http://www.ncl.ucar.edu/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org/

Edit the “user_change_me-*” files as needed (e.g., with specific compiler options), testing the
success of the compilation via the following (iteration may be needed, along with inspection of
the on-screen output and ../configure_build_env/work/config.log):

../../../admin_script clean ALL; ../../../admin_script build debug;

NOTE: Only the NETCDF_* and MPI_* entries in user_change_me-inclibs need to be correct
(for PRAMS, the NCL_NCARg_* and CFITSIO_* entries can be ignored).

If you encounter a compilation error involving something not found in module mpi, try adding
“DBROKEN_MPI_MOD” to your universal_lib user_change_me-compilers.* files (then clean,
and compile again).

(3) Download and unpack the PRAMS source code tree

From compressed archives: Decompress and extract the PRAMS code archives in a
directory of your choice (e.g., /home/user/PRAMS; will automatically be unpacked into
subdirectories named common and Mars):

bzip2 dc PRAMS_common2.9_r29fs_dist.tar.bz2 | tar xvf ;
bzip2 dc PRAMS_Mars2.9_r29fs_dist.tar.bz2 | tar xvf ;

 -OR-

From the (private) bitbucket.org repository using git: Change to a directory of your choice
(e.g., /home/user/PRAMS) and execute the below (the placeholder
bitbucket_repository_URL_for_* should be something like
https://some_user@bitbucket.org/some_user/PRAMS.git). The contents of the
repository will automatically be placed into a new subdirectory named PRAMS:

git clone {bitbucket_repository_URL_for_PRAMS};

(4) Configure and build the PRAMS source code tree

Change directory:

cd Mars/infrastructure/build;

Make a copy of build_env_config.other_packages-template called
build_env_config.other_packages, then optionally edit the new file appropriately (to specify
where the relevant universal_lib and common directories are located):

cp build_env_config.other_packagestemplate
build_env_config.other_packages;

Change directory:

cd build_env_config;

Copy the “user_change_me-*” files most relevant to your computer system to this directory –
for example:

cp examples/gfortran_gcclinux/* . ;

Edit the “user_change_me-*” files as needed (e.g., with specific compiler options), testing the
success of the compilation via the following (iteration may be needed, along with inspection of
the on-screen output and common/infrastructure/build/configure_build_env/work/config.log):

Change directory to Mars:

cd ../../..;

List the possible options available:

./admin_script h;

Clean out any pre-existing build debris (in both universal_lib and PRAMS):

./admin_script clean ALL;

Typically, one would build the modeling system with one of the following commands:
./admin_script build; (serial)
./admin_script build DM_only; (parallel; MPI required)
./admin_script build debug; (serial, with debugging flags)
./admin_script build DM_only debug; (parallel, with debugging flags; MPI required)

Install the desired static data files

This step does not necessarily have to be done every time – it is likely that one would not
want too many copies of this on a single machine/filesystem, as these files (in total) are
several GiB in size.

Decompress and extract the PRAMS data archives in a directory of your choice (e.g.,
/data/user/input_static-PRAMS_2.9; will automatically be unpacked into subdirectories named
common and Mars):

bzip2 dc PRAMS_2.9v1.common.full_data.tar.bz2 | tar xvf ;
bzip2 dc PRAMS_2.9v3.Mars.smaller_data.tar.bz2 | tar xvf ;
(OPTIONAL):
bzip2 dc PRAMS_2.9v1.Mars.large_data.tar.bz2 | tar xvf ;

Prepare the run directory

(1) This version of PRAMS offers a significant amount of flexibility regarding where its input
and output data are located. However, in order to easily refer to those locations, it is
suggested that a set of symbolic links pointing to those locations be created in the run
directory. Also, in choosing a location for the PRAMS output, bear in mind that typical model
output from a single PRAMS simulation can range in size from < 10 GiB to > 100 GiB, so
ensure that the chosen directory resides on a data volume that can store significant quantities
of data.

Change directory to Mars/run

Examples of creating such symbolic links:
ln s {dir_where_the_static_data_files_are} input_static;
ln s {dir_where_the_GCM_output_data _are} MGCM_output;
ln s {dir_for_PRAMS_output} output;

(2) Copy relevant runscript template(s) from example-runscripts to run. For each of the three
main types of PRAMS executables (prams, postp, prep), three choices of runscript are
provided: (i) an executable runscript for use when running in serial (or on a machine without
formal job queue management), (ii) a runscript with PBS directives (run_*.pbs; intended for
use with ‘qsub’), and (iii) a runscript with sbatch directives (run_*.sbatch; intended for use with
SLURM ‘sbatch’). For example:

On a machine without without formal job queue management (or for running in serial locally):
cp examplerunscripts/run_PRAMS run_PRAMS;
cp examplerunscripts/run_postp run_postp;
cp examplerunscripts/run_prep run_prep;

On a machine with SLURM job queue management:
cp examplerunscripts/run_PRAMS.sbatch run_PRAMS.sbatch;
cp examplerunscripts/run_postp.sbatch run_postp.sbatch;
cp examplerunscripts/run_prep.sbatch run_prep.sbatch;

(3) Copy relevant namelist template(s) from example-namelists to run. For example:

cp examplenamelists/PRAMS_IN PRAMS_IN.test;
cp examplenamelists/POSTP_IN POSTP_IN.test;

Updating the codebase(s)

With “official” compressed archive images: To update your codebase with an “official”
archive image that you have obtained, use the install mode of the appropriate admin_script –
note that the *.tar.bz2 can be in any directory, and will not be deleted or changed. Be aware
that any locally-modified source code with the same names will be overwritten. Some
examples:

cd PRAMS/PRAMS/common;
./admin_script install PRAMS_common2.9_r30fs_dist.tar.bz2;

cd PRAMS/PRAMS/Mars;
./admin_script install PRAMS_Mars2.9_r30fs_dist.tar.bz2;

cd PRAMS/universal_lib;
./admin_script install universal_lib1.2_r28fs_dist.tar.bz2;

 -OR-

With the (private) bitbucket.org repository using git: A git-aware repository/directory (i.e.,
git status doesn't return an error) already contains the bitbucket.org URL information, and
can be updated as in the following examples (if you have any locally-modified source code, git
may complain and suggest alternative courses of action – but that is beyond the scope of this
guide):

cd PRAMS/PRAMS/common;
git pull;

cd PRAMS/PRAMS/Mars;
git pull;

cd PRAMS/universal_lib;
git pull;

Overview of typical use(s)

(1) Compile PRAMS (successfully) – see the above instructions/notes.

(2) IF using GCM initial state and boundary conditions [“INITIALIZATION_TYPE = 2” in the
model namelist (PRAMS_IN.something)], preprocess the desired GCM output to be used.
This process generates proc_*.* files as output. For example:

./run_prep GCMOUTPUT*.nc;

To read about some available options:
./run_prep h;

(3) Set up PRAMS grid placement/parameters in PRAMS_IN.something. To help visualize
the grid placement, you may want to:

• Edit grid parameters in PRAMS_IN.something.
• Set "RUN_TYPE = 'GRID_INFO_FILE'" in PRAMS_IN.something.
• Run the model to create grid information files – it will exit after working briefly, and

creates grid_display-data.nc in a directory based on the values of

“_OUTPUT_DIR_ROOT” and “SIMULATION_ID” in PRAMS_IN.something (e.g.,
./output/MPF_test-01/vis/):

./run_PRAMS f PRAMS_IN.something;
• Run an NCL visualization script, creating viewable charts in PRAMS_grid_display.pdf –

for example:
./run_display_PRAMS_grids.py ./output/MPF_test01/vis;

• View PRAMS_grid_display.pdf and decide if further changes to the grid are
needed/desired. If so, repeat the steps in this sub-list.

(4) Set up all other PRAMS configuration parameters in PRAMS_IN.something.

(5) Create the PRAMS “surface files” (which contain the initial state of most ground surface
characteristics). First, set "RUN_TYPE = 'GRID_INFO_FILE'" in PRAMS_IN.something. Then
(this may take many minutes, depending on the grid/model configuration):

./run_PRAMS f PRAMS_IN.something;

(6) IF using GCM initial state and boundary conditions [“INITIALIZATION_TYPE = 2” in the
model namelist (PRAMS_IN.something)], create the PRAMS “var_files” (which contain the
initial state of the model and time-dependent boundary conditions). First, set "RUN_TYPE =
'MAKE_VAR_FILES'" in PRAMS_IN.something. Then (this may take many minutes or even
hours, depending on the grid/model configuration):

./run_PRAMS f PRAMS_IN.something;

(7) Run the model, starting at the initial state and time. First, set "RUN_TYPE =
'INITIAL_START'" in PRAMS_IN.something. Then, for example:

(in serial):
./run_PRAMS f PRAMS_IN.something;

-OR- to run (in serial) in the background without terminal interruption:
nohup ./run_PRAMS f PRAMS_IN.something &> something.log &;

-OR- to run (in parallel), with 6 computational nodes and 1 supervisory node:
./run_PRAMS n 7 f PRAMS_IN.something;

-OR- to run (in parallel), using SLURM sbatch:
(i) first edit the top items (SBATCH directives, PRAMS command-line options, and text file to
redirect stdout/stderr to) of run_PRAMS.sbatch
(ii) then
sbatch run_PRAMS.sbatch;

(8) Postprocess the model output (the raw PRAMS output is still in a somewhat arcane
poorly-portable/readable format), in order to calculate certain derived variables, investigate a
certain grid’s results (or all of them), et cetera. First, edit POSTP_IN.something appropriately.
Then run the postprocessor (only works in serial):

./run_postp f POSTP_IN.something;

(9) Visualize/analyze the postprocessed model output in GrADS, ncview, Python, or whatever
else you can make work.

