
[circa 2014-12-09; PRAMS_2.9]

Obtain and install the necessary files

Prerequisites:
1) Fortran (95+) compiler (e.g., gfortran 4.6+, ifort, pgf90)
2) C compiler (e.g., gcc, icc, pgcc)
3) Python 2.7+
4) NetCDF (must have been compiled with Fortran 90+ bindings; version 4+ is preferable;
http://www.unidata.ucar.edu/software/netcdf/)

Optional Prerequisites:
5) MPI [e.g., Open MPI (http://www.open-mpi.org) or MPICH2
(http://www.mcs.anl.gov/research/projects/mpich2/); must have been compiled with Fortran
90+ bindings] for parallel runs
6) NCL (http://www.ncl.ucar.edu/) for grid placement visualization

Install and configure the universal_lib source code tree:

From a compressed archive: Decompress and extract the universal_lib archive in a
directory of your choice (e.g., /home/user/PRAMS ; will automatically be unpacked into a
subdirectory named universal_lib):

bzip2 dc universal_lib1.2_r10fs_dist.tar.bz2 | tar xvf ;

 -OR-

From the bitbucket.org repository using git: Change to a directory of your choice (e.g.,
/home/user/PRAMS) and execute the below command (the placeholder
bitbucket_repository_URL should be something like
https://some_user@bitbucket.org/some_user/universal_lib.git). The
repository contents will automatically be placed into a new subdirectory named universal_lib:

git clone {bitbucket_repository_URL};

Change directory:

cd universal_lib/infrastructure/build/build_env_config;

Copy user_change_me-inclibs and the “user_change_me-*” files most relevant to your
computer system to this directory – for example:

cp examples/user_change_meinclibs . ;
cp examples/gfortran_gcclinux/* . ;

Edit the “user_change_me-*” files as needed (e.g., with specific compiler options), testing the
success of the compilation via the following (iteration may be needed, along with inspection of
the on-screen output and ../configure_build_env/work/config.log):

http://www.unidata.ucar.edu/software/netcdf/
http://www.ncl.ucar.edu/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org/

../../../admin_script.py clean ALL; ../../../admin_script.py build;

NOTE: Only the NETCDF_* and MPI_* entries in user_change_me-inclibs need to be correct
(for PRAMS, the NCL_NCARg_* and CFITSIO_* entries can be ignored).

If you encounter a compilation error involving something not found in module mpi, try adding
“DBROKEN_MPI_MOD” to your universal_lib user_change_me-compilers.* files (then clean,
and compile again).

Install and configure the PRAMS source code tree:

From compressed archives: Decompress and extract the PRAMS code archives in a
directory of your choice (e.g., /home/user/PRAMS; will automatically be unpacked into
subdirectories named common and Mars):

bzip2 dc PRAMS_common2.9_r9fs_dist.tar.bz2 | tar xvf ;
bzip2 dc PRAMS_Mars2.9_r9fs_dist.tar.bz2 | tar xvf ;

 -OR-

From the bitbucket.org repository using git: Change to a directory of your choice (e.g.,
/home/user/PRAMS) and execute the below (the placeholder bitbucket_repository_URL_for_*
should be something like
https://some_user@bitbucket.org/some_user/PRAMS.git). The contents of the
repository will automatically be placed into a new subdirectory named PRAMS:

git clone {bitbucket_repository_URL_for_PRAMS};

Change directory:

cd Mars/infrastructure/build;

Make a copy of build_env_config.other_packages-template called
build_env_config.other_packages, then edit the new file appropriately (to specify where the
relevant universal_lib and common directories are located):

cp build_env_config.other_packagestemplate
build_env_config.other_packages;

Change directory:

cd build_env_config;

Copy the “user_change_me-*” files most relevant to your computer system to this directory –
for example:

cp examples/gfortran_gcclinux/* . ;

Edit the “user_change_me-*” files as needed (e.g., with specific compiler options), testing the
success of the compilation via the following (iteration may be needed, along with inspection of
the on-screen output and
../../../../common/infrastructure/build/configure_build_env/work/config.log):

../../../admin_script.py clean ALL; ../../../admin_script.py build;

Build the modeling system

Change directory to Mars.

List the possible options available:

./admin_script.py h;

Typically, one would build the modeling system with the following commands:

./admin_script.py build; (serial)

./admin_script.py build DM_only; (parallel)
 -OR-
./admin_script.py build debug; (serial, with debugging flags)
./admin_script.py build DM_only debug; (parallel, with debugging flags)

Install the desired static data files

This step does not necessarily have to be done every time – it is likely that one would not
want too many copies of this on a single machine/filesystem, as these files (in total) are
several GiB in size.

Decompress and extract the PRAMS data archives in a directory of your choice (e.g.,
/data/user/input_static-PRAMS_2.9; will automatically be unpacked into subdirectories named
common and Mars):

bzip2 dc PRAMS_2.9v1.common.full_data.tar.bz2 | tar xvf ;
bzip2 dc PRAMS_2.9v3.Mars.smaller_data.tar.bz2 | tar xvf ;
(OPTIONAL):
bzip2 dc PRAMS_2.9v1.Mars.large_data.tar.bz2 | tar xvf ;

Prepare the run directory

This version of PRAMS offers a significant amount of flexibility regarding where its input and
output data are located. However, in order to easily refer to those locations, it is suggested
that a set of symbolic links pointing to those locations be created in the run directory. Also, in
choosing a location for the PRAMS output, bear in mind that typical model output from a
single PRAMS simulation can range in size from < 10 GiB to > 100 GiB, so ensure that the
chosen directory resides on a data volume that can store significant quantities of data.

Change directory to Mars/run

Examples of creating such symbolic links:
ln s {dir_where_the_static_data_files_are} input_static;
ln s {dir_where_the_GCM_output_data _are} MGCM_output;
ln s {dir_for_PRAMS_output} output;

cp run_PRAMStemplate run_PRAMS;
cp run_postptemplate run_postp;

Running the model

Prepare a model configuration/namelist file (e.g., PRAMS_IN.test; use PRAMS_IN-template
as a template). The general way to run the model (in serial) is:

./run_PRAMS f PRAMS_IN.test;

For a simulation with INITIALIZATION_TYPE = 2:
1) Set RUN_TYPE = 'MAKE_VAR_FILES' in the namelist, and run the model.
2) Then set RUN_TYPE = 'INITIAL' in the namelist, and run the model.

For a simulation with INITIALIZATION_TYPE = 1:
1) Set RUN_TYPE = 'INITIAL' in the namelist, and run the model.

To run in parallel with the computational load split between 6 nodes, with one supervisory/root
node (note that the model must be compiled for parallel for this to work):

./run_PRAMS n 7 f PRAMS_IN.test;

Updating the codebase(s)

With “official” compressed archive images: To update your codebase with an “official”
archive image that you have obtained, use the install mode of the appropriate
admin_script.py – note that the *.tar.bz2 can be in any directory, and will not be deleted or
changed. Be aware that any locally-modified source code with the same names will be
overwritten. Some examples:

cd PRAMS/PRAMS/common;
./admin_script.py install PRAMS_common2.9_r10fs_dist.tar.bz2;

cd PRAMS/PRAMS/Mars;
./admin_script.py install PRAMS_Mars2.9_r10fs_dist.tar.bz2;

cd PRAMS/universal_lib;
./admin_script.py install universal_lib1.2_r11fs_dist.tar.bz2;

 -OR-

With the bitbucket.org repository using git: A git-aware repository/directory (i.e., git
status doesn't return an error) already contains the bitbucket.org URL information, and can
be updated as in the following examples (if you have any locally-modified source code, git
may complain and suggest alternative courses of action – but that is beyond the scope of this
guide):

cd PRAMS/PRAMS/common;
git pull;

cd PRAMS/PRAMS/Mars;
git pull;

cd PRAMS/universal_lib;
git pull;

