!``````````````````````````````````````````````````````````````````` module body_specific_constants_mod !+ Frequently used Mars "constants" use univ_kind_defs_mod, only: f4, f8 use univ_math_constants_mod, only: twopi_f8, pi_f4 use univ_phys_constants_mod, only: R_univ_gas_f4 use univ_convert_units_mod, only: g_to_kg_f4 implicit none !================================== COMMON ================================== !%%% Physical values (some are guesses, however): real(f4), parameter :: & !*** Water substance values *** molmass_H2O = 18.0153_f4*g_to_kg_f4, & ! Molar mass of H2O [kg/mol] molmass_CO2 = 44.01_f4*g_to_kg_f4, & ! Molar mass of CO2 [kg/mol] !*** CO2 ice substance values *** ! CO2 ice params from LMD MGCM documentation (Forget, Hourdin, etc.): rho_CO2ice = 1630._f4, & ! Density of CO2 ice [kg/m^3] albd_CO2ice = 0.5_f4, & ! Albedo of CO2 ice (a guess) [none] emiss_CO2ice = 0.92_f4, & ! CO2 ice emissivity (an educated guess) [none] ! Better value at very cold temperatures (?; 5.9e5 before): lth_CO2ice = 5.95e5_f4, & ! CO2 latent heat (s<->g) [J/kg] !*** Dust substance values *** rho_dust = 2700._f4 ! Dust particle mass density [kg/m^3] !================================ END COMMON ================================ !================================ ATMOSPHERE ================================ !%%% Chemical/physical properties of *contemporary* atmospheric constituents: real(f4), parameter :: & ! Dry atmosphere: R_air = 192._f4, & ! Gas constant of Mars air [J/(K.kg)] cp = 770._f4, & ! Heat capacity (const press) [J/(K.kg)] cv = 578._f4, & ! " " (const vol); cv=cp-R [J/(K.kg)] ! Reference values: p00 = 1.e3_f4, & ! Ref pressure (for theta/pi calcs) [Pa] ! Water substance values: R_H2Ov = R_univ_gas_f4/molmass_H2O, & ! H2O vapor gas constant [J/(K.kg)] ! Values derived from those above: rocp = R_air / cp, & ! [none] cpor = cp / R_air, & ! [none] rocv = R_air / cv, & ! [none] cvor = cv / R_air, & ! [none] p00i = 1._f4 / p00, & ! [Pa^-1] cpi = 1._f4 / cp, & ! [(K.kg)/J] cv_o_cp = cv / cp, & ! [none] cp_o_cv = cp / cv, & ! [none] ep = R_air / R_H2Ov, & ! [none] Tv_fact = (R_H2Ov-R_air)/R_air ! Tv ~= T*(1.+Tv_fact*q) [none] !%%% Non-physical or quasi-physical atmosphere-related constants: real(f4), parameter :: & ! Turbulence-related values: vonk = 0.40_f4, & ! von Karman constant [none] tkmin = 5.e-4_f4 ! Smallest SGS TKE permitted [m^2/s^2] !============================== END ATMOSPHERE ============================== !=================================== BODY =================================== !%%% Surface/subsurface parameters: real(f4), parameter :: & !*** Subsurface parameters (constant for now) *** ! NASA ARC MGCM value -- range 1000. to 1800. s_rho = 1500._f4, & ! Subsurface density [kg/m^3] ! Chris McKay publication -- range 627. to 795. s_hc = 711._f4 ! Subsurface specific heat [J/(kg.K)] !%%% Body parameters: real(f8), parameter :: & sidldy = 88642.663_f8, & ! Sidereal rotation period [s] {1,3} mass = 6.4185e23_f8 ! Planetary system mass [kg] {1,2} real(f4), parameter :: & g_Xoid = 3.72_f4, & ! "sfc" gravitational accel [m/s^2] radius = 3.390e6_f4, & ! Radius of sphere of equal volume [m] dist_deglat = radius*pi_f4/180._f4, & ! Degree of latitude length [m] omega = real(twopi_f8/sidldy, kind=f4) ! Axial angular velocity [rad/s] !================================= END BODY ================================= !================================== BEYOND ================================== !%%% Orbit-related parameters: real(f8), parameter :: & obliq = 25.1919_f8, & ! Axial obliquity (to orbit) [deg] {3} mnsdy = 88775.244_f8, & ! Length of mean solar day [s] {3} AUtoM_kludge = 1.000085_f8, & ! "Kludge" factor [none] that may be ! used to "tune" the actual AU->m ! factor so that ! `mean_anom(ntabent-1)` ~= 2*pi ! in `orbtime_tabinit` morbpd = 5.9354e7_f8, & ! Tropical orbital period [s]; ! actually 5.93544d7 in {3}, but ! "tuned" so that `orbtab_inc` ! (module orbtime) is an even ! divisor lonasn = 49.57854_f8, & ! Longitude of ascending node [deg] {5} eccen = 0.09341233_f8, & ! Orbital eccentricity [none] {5} inclin = 1.85061_f8, & ! Orbital inclination [deg] {5} smaxis = 1.52366231_f8, & ! Orbital semimajor axis [AU] {5} lonper = 336.04084_f8, & ! Longitude of perihelion [deg] {5} massratio_Sun2bodysys = 3098708._f8, & ! Mass ratio (Sun/Mars_sys) [none] {2} mass_bodysys = 6.4185e23_f8, & ! Mass of Mars system [kg] {4} lsper = 250.999_f8 ! Ls of perihelion [deg] {3} real(f4), parameter :: & solar_mean_broadband = 1.3661e3_f4 ! Mean broadband solar ! flux @1AU [W/m^2] {6} !================================ END BEYOND ================================ !================================ REFERENCES ================================ ! {1} http://ssd.jpl.nasa.gov/phys_props_planets.html (circa 08.10.2003) ! {Yoder, C.F. 1995. "Astrometric and Geodetic Properties of Earth and the ! Solar System" in Global Earth Physics, A Handbook of Physical Constants, ! AGU Reference Shelf 1, American Geophysical Union, Tables 6,7,10.} ! ! {2} http://ssd.jpl.nasa.gov/?constants (circa 19.01.2013) ! {Data are from the 1994 IAU file of current best estimates. Planetary ! ranging determines the Earth/Moon mass ratio. Reference: Standish, E.M. ! (1995) ``Report of the IAU WGAS Sub-Group on Numerical Standards'', in ! Highlights of Astronomy (I. Appenzeller, ed.), Table 1, Kluwer Academic ! Publishers, Dordrecht.} ! ! {3} from Allison, M., and M. McEwen 2000. A post-Pathfinder evaluation of ! aerocentric solar coordinates with improved timing recipes for Mars ! seasonal/diurnal climate studies. Planet. Space Sci. 48, 215-235, ! doi:10.1016/S0032-0633(99)00092-6. ! ALSO SEE: Allison, M. 1997. Accurate analytic representations of solar ! time and seasons on Mars with applications to the Pathfinder/Surveyor ! missions. Geophys. Res. Lett. 24, 1967-1970. ! [contains Ls~=("heliocentric longitude"-85.06)] ! ! {4} http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html ! (circa 08.10.2003) ! ! {5} http://ssd.jpl.nasa.gov/elem_planets.html (circa 08.10.2003) ! {This table contains mean orbit solutions from a 250 yr. least squares fit ! of the DE 200 planetary ephemeris to a Keplerian orbit where each element ! is allowed to vary linearly with time. This solution fits the terrestrial ! planet orbits to ~25" or better, but achieves only ~600" for Saturn. ! Elements are referenced to mean ecliptic and equinox of J2000 at the ! J2000 epoch (2451545.0 JD).} ! ! {6} Gueymard, C., The sun's total and spectral irradiance for solar energy ! applications and solar radiation models, Solar Energy, Volume 76, ! Issue 4, April 2004, Pages 423-453, doi:10.1016/j.solener.2003.08.039 !============================== END REFERENCES ============================== end module body_specific_constants_mod